File size: 4,419 Bytes
8810e79
 
 
d429c0c
8810e79
 
f26a1bd
8810e79
 
f26a1bd
2200cb1
f26a1bd
166e47c
 
 
 
d429c0c
5b0fc3e
d429c0c
 
5b0fc3e
 
d429c0c
2200cb1
8810e79
5b0fc3e
 
d429c0c
 
8810e79
 
 
 
d429c0c
8810e79
 
f26a1bd
8810e79
 
 
 
 
 
 
 
 
d429c0c
8810e79
 
 
 
 
 
 
 
 
7d2986f
8810e79
 
 
 
 
 
 
 
 
5b0fc3e
 
8810e79
 
 
 
 
5b0fc3e
8810e79
 
 
 
 
 
 
 
 
 
 
 
 
d429c0c
 
8810e79
 
 
f26a1bd
8810e79
 
7d2986f
8810e79
2f3318a
5b0fc3e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import gradio as gr
from huggingface_hub import InferenceClient
import random
import textwrap

# Define the model to be used
model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
client = InferenceClient(model)

# Embedded system prompt
system_prompt_text = "You are a smart and helpful co-worker of Thailand based multi-national company PTT, and PTTEP. You help with any kind of request and provide a detailed answer to the question. But if you are asked about something unethical or dangerous, you must refuse and provide a safe and respectful way to handle that."

# Read the content of the info.md file
with open("info.md", "r") as file:
    info_md_content = file.read()

# Chunk the info.md content into smaller sections
chunk_size = 2500  # Adjust this size as needed
info_md_chunks = textwrap.wrap(info_md_content, chunk_size)

def get_all_chunks(chunks):
    return "\n\n".join(chunks)

def format_prompt_mixtral(message, history, info_md_chunks):
    prompt = "<s>"
    all_chunks = get_all_chunks(info_md_chunks)
    prompt += f"{all_chunks}\n\n"  # Add all chunks of info.md at the beginning
    prompt += f"{system_prompt_text}\n\n"  # Add the system prompt

    if history:
        for user_prompt, bot_response in history:
            prompt += f"[INST] {user_prompt} [/INST]"
            prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def chat_inf(prompt, history, seed, temp, tokens, top_p, rep_p):
    generate_kwargs = dict(
        temperature=temp,
        max_new_tokens=tokens,
        top_p=top_p,
        repetition_penalty=rep_p,
        do_sample=True,
        seed=seed,
    )

    formatted_prompt = format_prompt_mixtral(prompt, history, info_md_chunks)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        output += response.token.text
        yield [(prompt, output)]
    history.append((prompt, output))
    yield history

def clear_fn():
    return None, None

rand_val = random.randint(1, 1111111111111111)

def check_rand(inp, val):
    if inp:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
    else:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))

with gr.Blocks() as app:  # Add auth here
    gr.HTML("""<center><h1 style='font-size:xx-large;'>PTT Chatbot</h1><br><h3>running on Huggingface Inference </h3><br><h7>EXPERIMENTAL</center>""")
    with gr.Row():
        chat = gr.Chatbot(height=500)
    with gr.Group():
        with gr.Row():
            with gr.Column(scale=3):
                inp = gr.Textbox(label="Prompt", lines=5, interactive=True)  # Increased lines and interactive
                with gr.Row():
                    with gr.Column(scale=2):
                        btn = gr.Button("Chat")
                    with gr.Column(scale=1):
                        with gr.Group():
                            stop_btn = gr.Button("Stop")
                            clear_btn = gr.Button("Clear")
            with gr.Column(scale=1):
                with gr.Group():
                    rand = gr.Checkbox(label="Random Seed", value=True)
                    seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
                    tokens = gr.Slider(label="Max new tokens", value=3840, minimum=0, maximum=8000, step=64, interactive=True, visible=True, info="The maximum number of tokens")
                    temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
                    top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
                    rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0)

    hid1 = gr.Number(value=1, visible=False)

    go = btn.click(check_rand, [rand, seed], seed).then(chat_inf, [inp, chat, seed, temp, tokens, top_p, rep_p], chat)

    stop_btn.click(None, None, None, cancels=[go])
    clear_btn.click(clear_fn, None, [inp, chat])

app.queue(default_concurrency_limit=10).launch(share=True, auth=("admin", "0112358"))



I have 2000 lines in info.md file, and the model throws error due to character limit.
Even though I divide chunks, I added all together which is a bad choice.
what can I do?