File size: 4,474 Bytes
8810e79
 
 
d429c0c
8810e79
 
f26a1bd
8810e79
 
f26a1bd
2200cb1
f26a1bd
259c5c5
166e47c
 
 
259c5c5
 
 
 
5b0fc3e
d429c0c
259c5c5
d429c0c
8def8b6
 
d429c0c
03afc21
8810e79
d429c0c
 
03afc21
 
 
 
 
8810e79
 
03afc21
 
 
d429c0c
8810e79
 
03afc21
8810e79
 
 
 
 
 
 
 
 
03afc21
8810e79
 
 
 
03afc21
 
8810e79
 
 
7d2986f
8810e79
 
 
 
 
 
 
 
 
5b0fc3e
 
8810e79
 
 
 
 
5b0fc3e
8810e79
 
 
 
 
 
 
 
 
 
 
 
 
d429c0c
 
8810e79
 
 
f26a1bd
8810e79
 
7d2986f
8810e79
2f3318a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import gradio as gr
from huggingface_hub import InferenceClient
import random
import textwrap

# Define the model to be used
model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
client = InferenceClient(model)

# Embedded system prompt
system_prompt_text = "You are a smart and helpful co-worker of Thailand based multi-national company PTT, and PTTEP. You help with any kind of request and provide a detailed answer to the question. But if you are asked about something unethical or dangerous, you must refuse and provide a safe and respectful way to handle that."

# Read the content of the info.md and info2.md files
with open("info.md", "r") as file:
    info_md_content = file.read()

with open("info2.md", "r") as file:
    info2_md_content = file.read()

# Chunk the info.md and info2.md content into smaller sections
chunk_size = 2500  # Adjust this size as needed
info_md_chunks = textwrap.wrap(info_md_content, chunk_size)
info2_md_chunks = textwrap.wrap(info2_md_content, chunk_size)

# Combine both sets of chunks
all_chunks = info_md_chunks + info2_md_chunks

def format_prompt_mixtral(message, history, chunks):
    prompt = "<s>"
    prompt += f"{system_prompt_text}\n\n"  # Add the system prompt

    # Include the initial context from the chunks
    for chunk in chunks:
        prompt += f"[INST] System Information [/INST] {chunk}</s> "

    # Add conversation history
    if history:
        for user_prompt, bot_response in history:
            prompt += f"[INST] {user_prompt} [/INST] {bot_response}</s> "
    
    # Add the current user message
    prompt += f"[INST] {message} [/INST]"
    return prompt

def chat_inf(message, history, seed, temp, tokens, top_p, rep_p):
    generate_kwargs = dict(
        temperature=temp,
        max_new_tokens=tokens,
        top_p=top_p,
        repetition_penalty=rep_p,
        do_sample=True,
        seed=seed,
    )

    formatted_prompt = format_prompt_mixtral(message, history, all_chunks)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        output += response.token.text
        yield [(message, output)]
    history.append((message, output))
    yield history

def clear_fn():
    return None, None

rand_val = random.randint(1, 1111111111111111)

def check_rand(inp, val):
    if inp:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
    else:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))

with gr.Blocks() as app:  # Add auth here
    gr.HTML("""<center><h1 style='font-size:xx-large;'>PTT Chatbot</h1><br><h3>running on Huggingface Inference </h3><br><h7>EXPERIMENTAL</center>""")
    with gr.Row():
        chat = gr.Chatbot(height=500)
    with gr.Group():
        with gr.Row():
            with gr.Column(scale=3):
                inp = gr.Textbox(label="Prompt", lines=5, interactive=True)  # Increased lines and interactive
                with gr.Row():
                    with gr.Column(scale=2):
                        btn = gr.Button("Chat")
                    with gr.Column(scale=1):
                        with gr.Group():
                            stop_btn = gr.Button("Stop")
                            clear_btn = gr.Button("Clear")
            with gr.Column(scale=1):
                with gr.Group():
                    rand = gr.Checkbox(label="Random Seed", value=True)
                    seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
                    tokens = gr.Slider(label="Max new tokens", value=3840, minimum=0, maximum=8000, step=64, interactive=True, visible=True, info="The maximum number of tokens")
                    temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
                    top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
                    rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0)

    hid1 = gr.Number(value=1, visible=False)

    go = btn.click(check_rand, [rand, seed], seed).then(chat_inf, [inp, chat, seed, temp, tokens, top_p, rep_p], chat)

    stop_btn.click(None, None, None, cancels=[go])
    clear_btn.click(clear_fn, None, [inp, chat])

app.queue(default_concurrency_limit=10).launch(share=True, auth=("admin", "0112358"))