Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,231 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import sys
|
| 3 |
|
| 4 |
-
# Add the 'app' directory to sys.path
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from path import Path
|
| 6 |
+
import streamlit as st
|
| 7 |
+
from typing import Tuple
|
| 8 |
+
import easyocr # Import EasyOCR
|
| 9 |
+
|
| 10 |
+
from pathlib import Path
|
| 11 |
import sys
|
| 12 |
|
| 13 |
+
# Add the 'app' directory to the sys.path
|
| 14 |
+
# Assuming 'app' is in the current working directory
|
| 15 |
+
sys.path.append(str(Path(__file__).parent / 'app'))
|
| 16 |
+
from app.dataloader_iam import Batch
|
| 17 |
+
from app.model import Model, DecoderType
|
| 18 |
+
from app.preprocessor import Preprocessor
|
| 19 |
+
from streamlit_drawable_canvas import st_canvas
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# Set page config at the very beginning (only executed once)
|
| 23 |
+
st.set_page_config(
|
| 24 |
+
page_title="HTR App",
|
| 25 |
+
page_icon=":pencil:",
|
| 26 |
+
layout="centered",
|
| 27 |
+
initial_sidebar_state="auto",
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
ms = st.session_state
|
| 31 |
+
if "themes" not in ms:
|
| 32 |
+
ms.themes = {"current_theme": "light",
|
| 33 |
+
"refreshed": True,
|
| 34 |
+
|
| 35 |
+
"light": {"theme.base": "dark",
|
| 36 |
+
"theme.backgroundColor": "black",
|
| 37 |
+
"theme.primaryColor": "#c98bdb",
|
| 38 |
+
"theme.secondaryBackgroundColor": "#5591f5",
|
| 39 |
+
"theme.textColor": "white",
|
| 40 |
+
"theme.textColor": "white",
|
| 41 |
+
"button_face": "π"},
|
| 42 |
+
|
| 43 |
+
"dark": {"theme.base": "light",
|
| 44 |
+
"theme.backgroundColor": "white",
|
| 45 |
+
"theme.primaryColor": "#5591f5",
|
| 46 |
+
"theme.secondaryBackgroundColor": "#82E1D7",
|
| 47 |
+
"theme.textColor": "#0a1464",
|
| 48 |
+
"button_face": "π"},
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def ChangeTheme():
|
| 53 |
+
previous_theme = ms.themes["current_theme"]
|
| 54 |
+
tdict = ms.themes["light"] if ms.themes["current_theme"] == "light" else ms.themes["dark"]
|
| 55 |
+
for vkey, vval in tdict.items():
|
| 56 |
+
if vkey.startswith("theme"): st._config.set_option(vkey, vval)
|
| 57 |
+
|
| 58 |
+
ms.themes["refreshed"] = False
|
| 59 |
+
if previous_theme == "dark": ms.themes["current_theme"] = "light"
|
| 60 |
+
elif previous_theme == "light": ms.themes["current_theme"] = "dark"
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
btn_face = ms.themes["light"]["button_face"] if ms.themes["current_theme"] == "light" else ms.themes["dark"]["button_face"]
|
| 64 |
+
st.button(btn_face, on_click=ChangeTheme)
|
| 65 |
+
|
| 66 |
+
if ms.themes["refreshed"] == False:
|
| 67 |
+
ms.themes["refreshed"] = True
|
| 68 |
+
st.rerun()
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def get_img_size(line_mode: bool = False) -> Tuple[int, int]:
|
| 72 |
+
"""
|
| 73 |
+
Auxiliary method that sets the height and width
|
| 74 |
+
Height is fixed while width is set according to the Model used.
|
| 75 |
+
"""
|
| 76 |
+
if line_mode:
|
| 77 |
+
return 256, get_img_height()
|
| 78 |
+
return 128, get_img_height()
|
| 79 |
+
|
| 80 |
+
def get_img_height() -> int:
|
| 81 |
+
"""
|
| 82 |
+
Auxiliary method that sets the height, which is fixed for the Neural Network.
|
| 83 |
+
"""
|
| 84 |
+
return 32
|
| 85 |
+
|
| 86 |
+
def infer(line_mode: bool, model: Model, fn_img: Path) -> None:
|
| 87 |
+
"""
|
| 88 |
+
Auxiliary method that does inference using the pretrained models:
|
| 89 |
+
Recognizes text in an image given its path.
|
| 90 |
+
"""
|
| 91 |
+
img = cv2.imread(fn_img, cv2.IMREAD_GRAYSCALE)
|
| 92 |
+
assert img is not None
|
| 93 |
+
|
| 94 |
+
preprocessor = Preprocessor(get_img_size(line_mode), dynamic_width=True, padding=16)
|
| 95 |
+
img = preprocessor.process_img(img)
|
| 96 |
+
|
| 97 |
+
batch = Batch([img], None, 1)
|
| 98 |
+
recognized, probability = model.infer_batch(batch, True)
|
| 99 |
+
return [recognized, probability]
|
| 100 |
+
|
| 101 |
+
def infer_super_model(image_path) -> None:
|
| 102 |
+
reader = easyocr.Reader(['en']) # Initialize EasyOCR reader
|
| 103 |
+
result = reader.readtext(image_path)
|
| 104 |
+
recognized_texts = [text[1] for text in result] # Extract recognized texts
|
| 105 |
+
probabilities = [text[2] for text in result] # Extract probabilities
|
| 106 |
+
return recognized_texts, probabilities
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def main():
|
| 111 |
+
|
| 112 |
+
st.title('Extract text from Image Demo')
|
| 113 |
+
|
| 114 |
+
st.markdown("""
|
| 115 |
+
Streamlit Web Interface for Handwritten Text Recognition (HTR), Optical Character Recognition (OCR)
|
| 116 |
+
implemented with TensorFlow and trained on the IAM off-line HTR dataset.
|
| 117 |
+
The model takes images of single words or text lines (multiple words) as input and outputs the recognized text.
|
| 118 |
+
""", unsafe_allow_html=True)
|
| 119 |
+
|
| 120 |
+
st.markdown("""
|
| 121 |
+
Predictions can be made using one of two models:
|
| 122 |
+
- Single_Model (Trained on Single Word Images)
|
| 123 |
+
- Line_Model (Trained on Text Line Images)
|
| 124 |
+
- Super_Model ( Most Robust Option for English )
|
| 125 |
+
- Burmese (Link)
|
| 126 |
+
""", unsafe_allow_html=True)
|
| 127 |
+
|
| 128 |
+
st.subheader('Select a Model, Choose the Arguments and Draw in the box below or Upload an Image to obtain a prediction.')
|
| 129 |
+
|
| 130 |
+
#Selectors for the model and decoder
|
| 131 |
+
modelSelect = st.selectbox("Select a Model", ['Single_Model', 'Line_Model', 'Super_Model'])
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
if modelSelect != 'Super_Model':
|
| 135 |
+
decoderSelect = st.selectbox("Select a Decoder", ['Bestpath', 'Beamsearch', 'Wordbeamsearch'])
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
#Mappings (dictionaries) for the model and decoder. Asigns the directory or the DecoderType of the selected option.
|
| 139 |
+
modelMapping = {
|
| 140 |
+
"Single_Model": '../model/word-model',
|
| 141 |
+
"Line_Model": '../model/line-model'
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
decoderMapping = {
|
| 145 |
+
'Bestpath': DecoderType.BestPath,
|
| 146 |
+
'Beamsearch': DecoderType.BeamSearch,
|
| 147 |
+
'Wordbeamsearch': DecoderType.WordBeamSearch
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
#Slider for pencil width
|
| 151 |
+
strokeWidth = st.slider("Stroke Width: ", 1, 25, 6)
|
| 152 |
+
|
| 153 |
+
#Canvas/Text Box for user input. BackGround Color must be white (#FFFFFF) or else text will not be properly recognised.
|
| 154 |
+
inputDrawn = st_canvas(
|
| 155 |
+
fill_color="rgba(255, 165, 0, 0.3)",
|
| 156 |
+
stroke_width=strokeWidth,
|
| 157 |
+
update_streamlit=True,
|
| 158 |
+
background_image=None,
|
| 159 |
+
height = 200,
|
| 160 |
+
width = 400,
|
| 161 |
+
drawing_mode='freedraw',
|
| 162 |
+
key="canvas",
|
| 163 |
+
background_color = '#FFFFFF'
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
#Buffer for user input (images uploaded from the user's device)
|
| 167 |
+
inputBuffer = st.file_uploader("Upload an Image", type=["png"])
|
| 168 |
+
|
| 169 |
+
#Inference Button
|
| 170 |
+
inferBool = st.button("Recognize Text")
|
| 171 |
+
|
| 172 |
+
# After clicking the "Recognize Text" button, check if the model selected is Super_Model
|
| 173 |
+
if inferBool:
|
| 174 |
+
if modelSelect == 'Super_Model':
|
| 175 |
+
inputArray = None # Initialize inputArray to None
|
| 176 |
+
|
| 177 |
+
# Handling uploaded file
|
| 178 |
+
if inputBuffer is not None:
|
| 179 |
+
with Image.open(inputBuffer).convert('RGB') as img:
|
| 180 |
+
inputArray = np.array(img)
|
| 181 |
+
|
| 182 |
+
# Handling canvas data
|
| 183 |
+
elif inputDrawn.image_data is not None:
|
| 184 |
+
# Convert RGBA to RGB
|
| 185 |
+
inputArray = cv2.cvtColor(np.array(inputDrawn.image_data, dtype=np.uint8), cv2.COLOR_RGBA2RGB)
|
| 186 |
+
|
| 187 |
+
# Now check if inputArray has been set
|
| 188 |
+
if inputArray is not None:
|
| 189 |
+
# Initialize EasyOCR Reader
|
| 190 |
+
reader = easyocr.Reader(['en']) # Assuming English language; adjust as necessary
|
| 191 |
+
# Perform OCR
|
| 192 |
+
results = reader.readtext(inputArray)
|
| 193 |
+
|
| 194 |
+
# Display results
|
| 195 |
+
all_text = ''
|
| 196 |
+
for (bbox, text, prob) in results:
|
| 197 |
+
all_text += f'{text} (confidence: {prob:.2f})\n'
|
| 198 |
+
|
| 199 |
+
st.write("**Recognized Texts and their Confidence Scores:**")
|
| 200 |
+
st.text(all_text)
|
| 201 |
+
else:
|
| 202 |
+
st.write("No image data found. Please upload an image or draw on the canvas.")
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
else:
|
| 206 |
+
# Handle other model selections as before
|
| 207 |
+
if ((inputDrawn.image_data is not None or inputBuffer is not None) and inferBool == True):
|
| 208 |
+
#We turn the input into a numpy array
|
| 209 |
+
if inputDrawn.image_data is not None:
|
| 210 |
+
inputArray = np.array(inputDrawn.image_data)
|
| 211 |
+
|
| 212 |
+
if inputBuffer is not None:
|
| 213 |
+
inputBufferImage = Image.open(inputBuffer)
|
| 214 |
+
inputArray = np.array(inputBufferImage)
|
| 215 |
+
|
| 216 |
+
#We turn this array into a .png format and save it.
|
| 217 |
+
inputImage = Image.fromarray(inputArray.astype('uint8'), 'RGBA')
|
| 218 |
+
inputImage.save('userInput.png')
|
| 219 |
+
#We obtain the model directory and the decoder type from their mapping
|
| 220 |
+
modelDir = modelMapping[modelSelect]
|
| 221 |
+
decoderType = decoderMapping[decoderSelect]
|
| 222 |
+
|
| 223 |
+
#Finally, we call the model with this image as attribute and display the Best Candidate and its probability on the Interface
|
| 224 |
+
model = Model(list(open(modelDir + "/charList.txt").read()), modelDir, decoderType, must_restore=True)
|
| 225 |
+
inferedText = infer(modelDir == '../model/line-model', model, 'userInput.png')
|
| 226 |
|
| 227 |
+
st.write("**Best Candidate: **", inferedText[0][0])
|
| 228 |
+
st.write("**Probability: **", str(inferedText[1][0]*100) + "%")
|
| 229 |
|
| 230 |
+
if __name__ == "__main__":
|
| 231 |
+
main()
|