Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -61,14 +61,17 @@ def find_exact_match(df1, df2, column_name):
|
|
61 |
matches = pd.merge(df1, df2, on=column_name, how='inner')
|
62 |
return matches
|
63 |
|
64 |
-
|
65 |
def find_similar_texts(df1, df2, column_name, threshold=0.3):
|
66 |
# Find rows with similar texts in the specified column, including exact matches
|
67 |
similar_texts = []
|
68 |
exact_matches = []
|
69 |
|
|
|
|
|
|
|
|
|
70 |
# Concatenate texts from both dataframes
|
71 |
-
all_texts = df1[column_name].
|
72 |
|
73 |
# Compute TF-IDF vectors
|
74 |
vectorizer = TfidfVectorizer()
|
@@ -95,6 +98,7 @@ def find_similar_texts(df1, df2, column_name, threshold=0.3):
|
|
95 |
return similar_texts, exact_matches
|
96 |
|
97 |
|
|
|
98 |
def main():
|
99 |
st.title("Item Comparison App")
|
100 |
|
|
|
61 |
matches = pd.merge(df1, df2, on=column_name, how='inner')
|
62 |
return matches
|
63 |
|
|
|
64 |
def find_similar_texts(df1, df2, column_name, threshold=0.3):
|
65 |
# Find rows with similar texts in the specified column, including exact matches
|
66 |
similar_texts = []
|
67 |
exact_matches = []
|
68 |
|
69 |
+
# Convert numeric values to strings
|
70 |
+
df1[column_name] = df1[column_name].astype(str)
|
71 |
+
df2[column_name] = df2[column_name].astype(str)
|
72 |
+
|
73 |
# Concatenate texts from both dataframes
|
74 |
+
all_texts = df1[column_name].tolist() + df2[column_name].tolist()
|
75 |
|
76 |
# Compute TF-IDF vectors
|
77 |
vectorizer = TfidfVectorizer()
|
|
|
98 |
return similar_texts, exact_matches
|
99 |
|
100 |
|
101 |
+
|
102 |
def main():
|
103 |
st.title("Item Comparison App")
|
104 |
|