Update app.py
Browse files
app.py
CHANGED
@@ -4,69 +4,73 @@ import streamlit as st
|
|
4 |
import easyocr
|
5 |
import PIL
|
6 |
from PIL import Image, ImageDraw
|
|
|
7 |
|
8 |
def rectangle(image, result):
|
9 |
-
|
10 |
-
""" draw rectangles on image based on predicted coordinates"""
|
11 |
draw = ImageDraw.Draw(image)
|
12 |
for res in result:
|
13 |
-
top_left = tuple(res[0][0])
|
14 |
-
bottom_right = tuple(res[0][2])
|
15 |
draw.rectangle((top_left, bottom_right), outline="blue", width=2)
|
16 |
-
#
|
17 |
st.image(image)
|
18 |
|
19 |
-
|
20 |
-
# main title
|
21 |
st.title("Get text from image with EasyOCR")
|
22 |
|
23 |
-
#
|
24 |
st.markdown("## EasyOCR with Streamlit")
|
25 |
|
26 |
-
#
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
if file is not None:
|
31 |
-
image = Image.open(file)
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
result = reader.readtext(np.array(image)) # turn image to numpy array
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
# for i in range(100):
|
43 |
-
# Update the progress bar with each iteration.
|
44 |
-
# latest_iteration.text(f'Iteration {i+1}')
|
45 |
-
# bar.progress(i + 1)
|
46 |
-
# time.sleep(0.1)
|
47 |
|
48 |
-
#
|
49 |
-
for idx in
|
50 |
-
pred_text =
|
51 |
st.write(pred_text)
|
52 |
|
53 |
-
#
|
54 |
-
textdic_easyocr = {}
|
55 |
-
for idx in range(len(result)):
|
56 |
-
pred_coor = result[idx][0]
|
57 |
-
pred_text = result[idx][1]
|
58 |
-
pred_confidence = result[idx][2]
|
59 |
-
textdic_easyocr[pred_text] = {}
|
60 |
-
textdic_easyocr[pred_text]['pred_confidence'] = pred_confidence
|
61 |
|
62 |
-
#
|
63 |
df = pd.DataFrame.from_dict(textdic_easyocr).T
|
64 |
st.table(df)
|
65 |
|
66 |
-
#
|
67 |
rectangle(image, result)
|
68 |
-
|
69 |
-
st.spinner(text="In progress...")
|
70 |
-
|
71 |
-
else:
|
72 |
-
st.write("Upload your image")
|
|
|
4 |
import easyocr
|
5 |
import PIL
|
6 |
from PIL import Image, ImageDraw
|
7 |
+
from streamlit_drawable_canvas import st_canvas
|
8 |
|
9 |
def rectangle(image, result):
|
10 |
+
"""Draw rectangles on image based on predicted coordinates."""
|
|
|
11 |
draw = ImageDraw.Draw(image)
|
12 |
for res in result:
|
13 |
+
top_left = tuple(res[0][0]) # top left coordinates as tuple
|
14 |
+
bottom_right = tuple(res[0][2]) # bottom right coordinates as tuple
|
15 |
draw.rectangle((top_left, bottom_right), outline="blue", width=2)
|
16 |
+
# Display image on streamlit
|
17 |
st.image(image)
|
18 |
|
19 |
+
# Main title
|
|
|
20 |
st.title("Get text from image with EasyOCR")
|
21 |
|
22 |
+
# Subtitle
|
23 |
st.markdown("## EasyOCR with Streamlit")
|
24 |
|
25 |
+
# Upload image file or draw
|
26 |
+
st.markdown("## Upload an Image or Draw")
|
27 |
+
col1, col2 = st.columns(2)
|
28 |
+
|
29 |
+
with col1:
|
30 |
+
file = st.file_uploader("Upload Here", type=['png', 'jpg', 'jpeg'])
|
31 |
|
32 |
+
with col2:
|
33 |
+
# Drawable canvas
|
34 |
+
canvas_result = st_canvas(
|
35 |
+
fill_color="rgba(255, 165, 0, 0.3)",
|
36 |
+
stroke_width=3,
|
37 |
+
stroke_color="#ffffff",
|
38 |
+
background_color="#000000",
|
39 |
+
background_image=None if file else st.session_state.get("background", None),
|
40 |
+
update_streamlit=True,
|
41 |
+
width=400,
|
42 |
+
height=400,
|
43 |
+
drawing_mode="freedraw",
|
44 |
+
key="canvas",
|
45 |
+
)
|
46 |
+
|
47 |
+
# Process uploaded image or drawing
|
48 |
if file is not None:
|
49 |
+
image = Image.open(file) # Read image with PIL library
|
50 |
+
elif canvas_result.image_data is not None:
|
51 |
+
image = Image.fromarray(canvas_result.image_data.astype('uint8'), 'RGBA').convert('RGB')
|
52 |
+
else:
|
53 |
+
st.write("Please upload an image or use the canvas to draw.")
|
54 |
+
image = None
|
55 |
|
56 |
+
if image is not None:
|
57 |
+
st.image(image) # Display
|
|
|
58 |
|
59 |
+
# Only detect the English and Turkish part of the image as text
|
60 |
+
reader = easyocr.Reader(['en','my'], gpu=False)
|
61 |
+
result = reader.readtext(np.array(image)) # Turn image to numpy array
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# Print all predicted text:
|
64 |
+
for idx, res in enumerate(result):
|
65 |
+
pred_text = res[1]
|
66 |
st.write(pred_text)
|
67 |
|
68 |
+
# Collect the results in the dictionary:
|
69 |
+
textdic_easyocr = {res[1]: {'pred_confidence': res[2]} for res in result}
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
# Create a data frame which shows the predicted text and prediction confidence
|
72 |
df = pd.DataFrame.from_dict(textdic_easyocr).T
|
73 |
st.table(df)
|
74 |
|
75 |
+
# Get boxes on the image
|
76 |
rectangle(image, result)
|
|
|
|
|
|
|
|
|
|