Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,36 @@
|
|
1 |
-
import
|
2 |
import numpy as np
|
3 |
import streamlit as st
|
4 |
-
import easyocr
|
5 |
-
from PIL import Image, ImageDraw
|
6 |
from streamlit_drawable_canvas import st_canvas
|
|
|
|
|
7 |
|
8 |
def rectangle(image, result):
|
9 |
-
"""Draw rectangles on the image based on predicted coordinates."""
|
10 |
-
|
|
|
11 |
for res in result:
|
12 |
top_left = tuple(res[0][0])
|
13 |
bottom_right = tuple(res[0][2])
|
14 |
draw.rectangle((top_left, bottom_right), outline="blue", width=2)
|
15 |
-
st.image(
|
16 |
-
|
17 |
-
# Main title and markdowns
|
18 |
-
st.title("Get text from an image with EasyOCR")
|
19 |
-
st.markdown("## EasyOCR with Streamlit")
|
20 |
-
st.markdown("## Upload an Image or Draw")
|
21 |
-
|
22 |
-
# Column layout for uploader and canvas
|
23 |
-
col1, col2 = st.columns(2)
|
24 |
-
|
25 |
-
with col1:
|
26 |
-
file = st.file_uploader("Upload Here", type=['png', 'jpg', 'jpeg'])
|
27 |
-
|
28 |
-
with col2:
|
29 |
-
canvas_result = st_canvas(
|
30 |
-
fill_color="rgba(255, 165, 0, 0.3)",
|
31 |
-
stroke_width=3,
|
32 |
-
stroke_color="#ffffff",
|
33 |
-
background_color="#000000",
|
34 |
-
background_image=None if file else st.session_state.get("background", None),
|
35 |
-
update_streamlit=True,
|
36 |
-
width=400,
|
37 |
-
height=400,
|
38 |
-
drawing_mode="freedraw",
|
39 |
-
key="canvas",
|
40 |
-
)
|
41 |
-
|
42 |
-
image = None
|
43 |
|
44 |
-
|
45 |
-
image = Image.open(file)
|
46 |
-
elif canvas_result.image_data is not None:
|
47 |
-
# Convert canvas RGBA image to RGB
|
48 |
-
canvas_image_data = canvas_result.image_data.astype(np.uint8)
|
49 |
-
image = Image.fromarray(canvas_image_data, 'RGBA').convert('RGB')
|
50 |
|
51 |
if image is not None:
|
52 |
-
st.image(image)
|
53 |
|
54 |
-
|
55 |
-
|
|
|
|
|
56 |
|
57 |
for idx, res in enumerate(result):
|
58 |
pred_text = res[1]
|
59 |
st.write(pred_text)
|
60 |
|
61 |
textdic_easyocr = {res[1]: {'pred_confidence': res[2]} for res in result}
|
62 |
-
df = pd.DataFrame.from_dict(textdic_easyocr)
|
63 |
st.table(df)
|
64 |
|
65 |
rectangle(image, result)
|
|
|
1 |
+
from PIL import Image, ImageDraw
|
2 |
import numpy as np
|
3 |
import streamlit as st
|
|
|
|
|
4 |
from streamlit_drawable_canvas import st_canvas
|
5 |
+
import easyocr
|
6 |
+
import pandas as pd
|
7 |
|
8 |
def rectangle(image, result):
|
9 |
+
"""Draw rectangles on the image based on predicted coordinates and display the image."""
|
10 |
+
draw_image = image.copy() # Work on a copy of the image
|
11 |
+
draw = ImageDraw.Draw(draw_image)
|
12 |
for res in result:
|
13 |
top_left = tuple(res[0][0])
|
14 |
bottom_right = tuple(res[0][2])
|
15 |
draw.rectangle((top_left, bottom_right), outline="blue", width=2)
|
16 |
+
st.image(draw_image, caption="Processed Image with Detected Text Highlighted")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Rest of your script remains unchanged until the final processing:
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
if image is not None:
|
21 |
+
st.image(image, caption="Uploaded/Drawn Image")
|
22 |
|
23 |
+
# Optional: Indicate that processing is happening
|
24 |
+
with st.spinner('Processing...'):
|
25 |
+
reader = easyocr.Reader(['en'], gpu=False) # Consider moving this outside the loop if performance is a concern
|
26 |
+
result = reader.readtext(np.array(image))
|
27 |
|
28 |
for idx, res in enumerate(result):
|
29 |
pred_text = res[1]
|
30 |
st.write(pred_text)
|
31 |
|
32 |
textdic_easyocr = {res[1]: {'pred_confidence': res[2]} for res in result}
|
33 |
+
df = pd.DataFrame.from_dict(textdic_easyocr, orient='index', columns=['pred_confidence'])
|
34 |
st.table(df)
|
35 |
|
36 |
rectangle(image, result)
|