EZOCR / app.py
Mattral's picture
Update app.py
6ca2703 verified
raw
history blame
2.08 kB
from PIL import Image, ImageDraw
import numpy as np
import streamlit as st
from streamlit_drawable_canvas import st_canvas
import easyocr
import pandas as pd
def rectangle(image, result):
"""Draw rectangles on the image based on predicted coordinates and display the image."""
draw_image = image.copy() # Work on a copy of the image
draw = ImageDraw.Draw(draw_image)
for res in result:
top_left = tuple(res[0][0])
bottom_right = tuple(res[0][2])
draw.rectangle((top_left, bottom_right), outline="blue", width=2)
st.image(draw_image, caption="Processed Image with Detected Text Highlighted")
# Main title and markdowns
st.title("Get text from an image with EasyOCR")
st.markdown("## EasyOCR with Streamlit")
st.markdown("## Upload an Image or Draw")
# Column layout for uploader and canvas
col1, col2 = st.columns(2)
with col1:
file = st.file_uploader("Upload Here", type=['png', 'jpg', 'jpeg'])
with col2:
canvas_result = st_canvas(
fill_color="rgba(255, 165, 0, 0.3)",
stroke_width=3,
stroke_color="#ffffff",
background_color="#000000",
background_image=None if file else st.session_state.get("background", None),
update_streamlit=True,
width=400,
height=400,
drawing_mode="freedraw",
key="canvas",
)
if image is not None:
st.image(image, caption="Uploaded/Drawn Image")
# Optional: Indicate that processing is happening
with st.spinner('Processing...'):
reader = easyocr.Reader(['en', 'ja'], gpu=False) # Consider moving this outside the loop if performance is a concern
result = reader.readtext(np.array(image))
for idx, res in enumerate(result):
pred_text = res[1]
st.write(pred_text)
textdic_easyocr = {res[1]: {'pred_confidence': res[2]} for res in result}
df = pd.DataFrame.from_dict(textdic_easyocr, orient='index', columns=['pred_confidence'])
st.table(df)
rectangle(image, result)
else:
st.write("Please upload an image or use the canvas to draw.")