import streamlit as st import requests import logging from langchain.document_loaders import PDFPlumberLoader from langchain.text_splitters import RecursiveCharacterTextSplitter from langchain.prompts import ChatPromptTemplate from langchain.llms import HuggingFacePipeline from transformers import pipeline # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Page configuration st.set_page_config( page_title="DeepSeek Chatbot - ruslanmv.com", page_icon="🤖", layout="centered" ) # Initialize session state for chat history if "messages" not in st.session_state: st.session_state.messages = [] # Sidebar configuration with st.sidebar: st.header("Model Configuration") st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)") # Dropdown to select model model_options = [ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", ] selected_model = st.selectbox("Select Model", model_options, index=0) system_message = st.text_area( "System Message", value="You are a friendly chatbot created by ruslanmv.com. Provide clear, accurate, and brief answers. Keep responses polite, engaging, and to the point. If unsure, politely suggest alternatives.", height=100 ) max_tokens = st.slider( "Max Tokens", 10, 4000, 100 ) temperature = st.slider( "Temperature", 0.1, 4.0, 0.3 ) top_p = st.slider( "Top-p", 0.1, 1.0, 0.6 ) # Function to query the Hugging Face API def query(payload, api_url): headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"} logger.info(f"Sending request to {api_url} with payload: {payload}") response = requests.post(api_url, headers=headers, json=payload) logger.info(f"Received response: {response.status_code}, {response.text}") try: return response.json() except requests.exceptions.JSONDecodeError: logger.error(f"Failed to decode JSON response: {response.text}") return None # Function to load and process PDF def process_pdf(uploaded_file): loader = PDFPlumberLoader(uploaded_file) documents = loader.load() # Split the documents into chunks text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, add_start_index=True ) return text_splitter.split_documents(documents) # Function to generate response using LangChain def generate_response_with_langchain(question, context): prompt_template = """ You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise. Question: {question} Context: {context} Answer: """ prompt = ChatPromptTemplate.from_template(prompt_template) model = HuggingFacePipeline(pipeline("text-generation", model=selected_model)) # Use LangChain to generate an answer chain = prompt | model response = chain.invoke({"question": question, "context": context}) return response # Chat interface st.title("🤖 DeepSeek Chatbot") st.caption("Powered by Hugging Face Inference API - Configure in sidebar") # Display chat history for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Handle input and PDF processing uploaded_file = st.file_uploader("Upload PDF", type="pdf", accept_multiple_files=False) if uploaded_file: documents = process_pdf(uploaded_file) context = "\n\n".join([doc.page_content for doc in documents]) # Ask the user a question if prompt := st.chat_input("Type your message..."): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) try: with st.spinner("Generating response..."): # Combine system message and user input into a single prompt full_prompt = f"{system_message}\n\nUser: {prompt}\nAssistant:" payload = { "inputs": full_prompt, "parameters": { "max_new_tokens": max_tokens, "temperature": temperature, "top_p": top_p, "return_full_text": False } } # Dynamically construct the API URL based on the selected model api_url = f"https://api-inference.huggingface.co/models/{selected_model}" logger.info(f"Selected model: {selected_model}, API URL: {api_url}") # Query the Hugging Face API using the selected model output = query(payload, api_url) # Handle API response if output is not None and isinstance(output, list) and len(output) > 0: if 'generated_text' in output[0]: assistant_response = output[0]['generated_text'].strip() # Check for and remove duplicate responses responses = assistant_response.split("\n\n") unique_response = responses[0].strip() logger.info(f"Generated response: {unique_response}") # Append response to chat only once with st.chat_message("assistant"): st.markdown(unique_response) st.session_state.messages.append({"role": "assistant", "content": unique_response}) else: logger.error(f"Unexpected API response structure: {output}") st.error("Error: Unexpected response from the model. Please try again.") else: logger.error(f"Empty or invalid API response: {output}") st.error("Error: Unable to generate a response. Please check the model and try again.") except Exception as e: logger.error(f"Application Error: {str(e)}", exc_info=True) st.error(f"Application Error: {str(e)}") # Allow user to ask a question based on extracted PDF content if prompt := st.chat_input("Ask a question about the PDF content"): if documents: context = "\n\n".join([doc.page_content for doc in documents]) # Get context from documents answer = generate_response_with_langchain(prompt, context) # Show the answer from LangChain model with st.chat_message("assistant"): st.markdown(answer) st.session_state.messages.append({"role": "assistant", "content": answer})