Mattral commited on
Commit
e17dfb8
·
verified ·
1 Parent(s): dbf67ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -6
app.py CHANGED
@@ -5,7 +5,7 @@ import logging
5
  from langchain.document_loaders import PDFPlumberLoader
6
  from langchain.text_splitter import RecursiveCharacterTextSplitter
7
  from langchain.prompts import ChatPromptTemplate
8
- from langchain.llms import HuggingFacePipeline
9
  from transformers import pipeline
10
 
11
  # Configure logging
@@ -13,7 +13,7 @@ logging.basicConfig(level=logging.INFO)
13
  logger = logging.getLogger(__name__)
14
 
15
  # Page configuration
16
- st.set_page_config(page_title="DeepSeek Chatbot - ruslanmv.com", page_icon="🤖", layout="centered")
17
 
18
  # Initialize session state for chat history
19
  if "messages" not in st.session_state:
@@ -70,10 +70,13 @@ def generate_response_with_langchain(question, context):
70
  """
71
 
72
  prompt = ChatPromptTemplate.from_template(prompt_template)
73
- model = HuggingFacePipeline(pipeline("text-generation", model=selected_model))
 
 
 
74
 
75
  # Use LangChain to generate an answer
76
- chain = prompt | model
77
  response = chain.invoke({"question": question, "context": context})
78
  return response
79
 
@@ -94,10 +97,10 @@ if uploaded_file:
94
  documents = process_pdf(uploaded_file)
95
  context = "\n\n".join([doc.page_content for doc in documents])
96
 
97
- # Combine system message and user input into a single prompt
98
  prompt_input = "Ask a question about the PDF content"
99
 
100
- # Show the PDF-based question input if the PDF is uploaded
101
  prompt = st.chat_input(prompt_input) if documents else None
102
 
103
  if prompt:
 
5
  from langchain.document_loaders import PDFPlumberLoader
6
  from langchain.text_splitter import RecursiveCharacterTextSplitter
7
  from langchain.prompts import ChatPromptTemplate
8
+ from langchain.llms import HuggingFaceLLM
9
  from transformers import pipeline
10
 
11
  # Configure logging
 
13
  logger = logging.getLogger(__name__)
14
 
15
  # Page configuration
16
+ st.set_page_config(page_title="DeepSeek Chatbot RAG", page_icon="🤖", layout="centered")
17
 
18
  # Initialize session state for chat history
19
  if "messages" not in st.session_state:
 
70
  """
71
 
72
  prompt = ChatPromptTemplate.from_template(prompt_template)
73
+
74
+ # Initialize HuggingFace model with LangChain's HuggingFaceLLM
75
+ hf_pipeline = pipeline("text-generation", model=selected_model)
76
+ llm = HuggingFaceLLM(pipeline=hf_pipeline)
77
 
78
  # Use LangChain to generate an answer
79
+ chain = prompt | llm
80
  response = chain.invoke({"question": question, "context": context})
81
  return response
82
 
 
97
  documents = process_pdf(uploaded_file)
98
  context = "\n\n".join([doc.page_content for doc in documents])
99
 
100
+ # Show the PDF-based question input if the PDF is uploaded
101
  prompt_input = "Ask a question about the PDF content"
102
 
103
+ # Show the chat input if PDF is uploaded
104
  prompt = st.chat_input(prompt_input) if documents else None
105
 
106
  if prompt: