Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -480,7 +480,8 @@ df.drop(columns={col_to_delete}, inplace=True)
|
|
480 |
ax.set_title('Feature Importance')
|
481 |
st.pyplot(fig)
|
482 |
new_line()
|
483 |
-
|
|
|
484 |
if st.checkbox("Identify Outliers", value=False):
|
485 |
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
|
486 |
col_for_outliers = st.selectbox("Select Column to Check Outliers", options=numeric_cols)
|
@@ -490,12 +491,7 @@ df.drop(columns={col_to_delete}, inplace=True)
|
|
490 |
st.pyplot(fig)
|
491 |
new_line()
|
492 |
|
493 |
-
|
494 |
-
selected_cols = st.multiselect("Select Columns", options=df.columns, default=df.columns[:2])
|
495 |
-
sns.pairplot(df[selected_cols])
|
496 |
-
st.pyplot()
|
497 |
-
new_line()
|
498 |
-
|
499 |
if st.checkbox("Show Cross-tabulations", value=False):
|
500 |
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
|
501 |
x_col = st.selectbox("Select X-axis Column for Cross-tab", options=categorical_cols, index=0)
|
@@ -504,6 +500,7 @@ df.drop(columns={col_to_delete}, inplace=True)
|
|
504 |
st.write(cross_tab)
|
505 |
new_line()
|
506 |
|
|
|
507 |
if st.checkbox("Segmented Analysis", value=False):
|
508 |
segments = st.selectbox("Select Segment", options=df.columns)
|
509 |
segment_values = df[segments].dropna().unique()
|
@@ -512,15 +509,25 @@ df.drop(columns={col_to_delete}, inplace=True)
|
|
512 |
st.write(segmented_data)
|
513 |
new_line()
|
514 |
|
515 |
-
|
516 |
if st.checkbox("Temporal Analysis", value=False):
|
517 |
-
|
518 |
-
df.
|
519 |
-
|
520 |
-
|
521 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
|
523 |
-
|
524 |
if st.checkbox("Show Word Cloud", value=False):
|
525 |
text_col = st.selectbox("Select Text Column for Word Cloud", options=df.select_dtypes(include=[np.object]).columns.tolist())
|
526 |
text_data = ' '.join(df[text_col].dropna())
|
@@ -531,6 +538,7 @@ df.drop(columns={col_to_delete}, inplace=True)
|
|
531 |
st.pyplot(fig)
|
532 |
new_line()
|
533 |
|
|
|
534 |
if st.checkbox("Show Text Statistics", value=False):
|
535 |
text_col = st.selectbox("Select Text Column for Statistics", options=df.select_dtypes(include=[np.object]).columns.tolist())
|
536 |
text_stats = df[text_col].dropna().apply(lambda x: {'length': len(x), 'word_count': len(x.split())})
|
@@ -539,7 +547,7 @@ df.drop(columns={col_to_delete}, inplace=True)
|
|
539 |
new_line()
|
540 |
|
541 |
|
542 |
-
|
543 |
# Interactive Data Tables
|
544 |
interactive_table = st.checkbox("Show Interactive Data Table", value=False)
|
545 |
new_line()
|
|
|
480 |
ax.set_title('Feature Importance')
|
481 |
st.pyplot(fig)
|
482 |
new_line()
|
483 |
+
|
484 |
+
new_line()
|
485 |
if st.checkbox("Identify Outliers", value=False):
|
486 |
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
|
487 |
col_for_outliers = st.selectbox("Select Column to Check Outliers", options=numeric_cols)
|
|
|
491 |
st.pyplot(fig)
|
492 |
new_line()
|
493 |
|
494 |
+
new_line()
|
|
|
|
|
|
|
|
|
|
|
495 |
if st.checkbox("Show Cross-tabulations", value=False):
|
496 |
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
|
497 |
x_col = st.selectbox("Select X-axis Column for Cross-tab", options=categorical_cols, index=0)
|
|
|
500 |
st.write(cross_tab)
|
501 |
new_line()
|
502 |
|
503 |
+
new_line()
|
504 |
if st.checkbox("Segmented Analysis", value=False):
|
505 |
segments = st.selectbox("Select Segment", options=df.columns)
|
506 |
segment_values = df[segments].dropna().unique()
|
|
|
509 |
st.write(segmented_data)
|
510 |
new_line()
|
511 |
|
512 |
+
new_line()
|
513 |
if st.checkbox("Temporal Analysis", value=False):
|
514 |
+
date_col_options = df.select_dtypes(include=[np.datetime64]).columns.tolist()
|
515 |
+
value_col_options = df.select_dtypes(include=np.number).columns.tolist()
|
516 |
+
|
517 |
+
if not date_col_options:
|
518 |
+
st.error("No datetime columns found in the DataFrame.")
|
519 |
+
elif not value_col_options:
|
520 |
+
st.error("No numeric columns found in the DataFrame.")
|
521 |
+
else:
|
522 |
+
date_col = st.selectbox("Select Date Column", options=date_col_options)
|
523 |
+
value_col = st.selectbox("Select Value Column", options=value_col_options)
|
524 |
+
|
525 |
+
fig, ax = plt.subplots()
|
526 |
+
df.set_index(date_col)[value_col].plot(ax=ax)
|
527 |
+
ax.set_title(f'Trend Over Time - {value_col}')
|
528 |
+
st.pyplot(fig)
|
529 |
|
530 |
+
new_line()
|
531 |
if st.checkbox("Show Word Cloud", value=False):
|
532 |
text_col = st.selectbox("Select Text Column for Word Cloud", options=df.select_dtypes(include=[np.object]).columns.tolist())
|
533 |
text_data = ' '.join(df[text_col].dropna())
|
|
|
538 |
st.pyplot(fig)
|
539 |
new_line()
|
540 |
|
541 |
+
new_line()
|
542 |
if st.checkbox("Show Text Statistics", value=False):
|
543 |
text_col = st.selectbox("Select Text Column for Statistics", options=df.select_dtypes(include=[np.object]).columns.tolist())
|
544 |
text_stats = df[text_col].dropna().apply(lambda x: {'length': len(x), 'word_count': len(x.split())})
|
|
|
547 |
new_line()
|
548 |
|
549 |
|
550 |
+
new_line()
|
551 |
# Interactive Data Tables
|
552 |
interactive_table = st.checkbox("Show Interactive Data Table", value=False)
|
553 |
new_line()
|