Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -393,6 +393,100 @@ df.drop(columns={col_to_delete}, inplace=True)
|
|
393 |
col1, col2, col3 = st.columns([1, 0.7, 1])
|
394 |
if col2.button("Show DataFrame", use_container_width=True):
|
395 |
st.dataframe(df, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
|
397 |
|
398 |
# Missing Values
|
|
|
393 |
col1, col2, col3 = st.columns([1, 0.7, 1])
|
394 |
if col2.button("Show DataFrame", use_container_width=True):
|
395 |
st.dataframe(df, use_container_width=True)
|
396 |
+
|
397 |
+
#start point
|
398 |
+
|
399 |
+
# Histograms for Numerical Features
|
400 |
+
hist = st.checkbox("Show Histograms", value=False)
|
401 |
+
new_line()
|
402 |
+
if hist:
|
403 |
+
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
|
404 |
+
col_for_hist = st.selectbox("Select Column for Histogram", options=numeric_cols)
|
405 |
+
num_bins = st.slider("Select Number of Bins", min_value=10, max_value=100, value=30)
|
406 |
+
fig, ax = plt.subplots()
|
407 |
+
df[col_for_hist].hist(bins=num_bins, ax=ax, color='skyblue')
|
408 |
+
ax.set_title(f'Histogram of {col_for_hist}')
|
409 |
+
st.pyplot(fig)
|
410 |
+
new_line()
|
411 |
+
|
412 |
+
# Box Plots for Numerical Features
|
413 |
+
boxplot = st.checkbox("Show Box Plots", value=False)
|
414 |
+
new_line()
|
415 |
+
if boxplot:
|
416 |
+
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
|
417 |
+
col_for_box = st.selectbox("Select Column for Box Plot", options=numeric_cols)
|
418 |
+
fig, ax = plt.subplots()
|
419 |
+
df.boxplot(column=[col_for_box], ax=ax)
|
420 |
+
ax.set_title(f'Box Plot of {col_for_box}')
|
421 |
+
st.pyplot(fig)
|
422 |
+
new_line()
|
423 |
+
|
424 |
+
# Scatter Plots for Numerical Features
|
425 |
+
scatter = st.checkbox("Show Scatter Plots", value=False)
|
426 |
+
new_line()
|
427 |
+
if scatter:
|
428 |
+
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
|
429 |
+
x_col = st.selectbox("Select X-axis Column", options=numeric_cols, index=0)
|
430 |
+
y_col = st.selectbox("Select Y-axis Column", options=numeric_cols, index=1 if len(numeric_cols) > 1 else 0)
|
431 |
+
fig, ax = plt.subplots()
|
432 |
+
df.plot(kind='scatter', x=x_col, y=y_col, ax=ax, color='red')
|
433 |
+
ax.set_title(f'Scatter Plot between {x_col} and {y_col}')
|
434 |
+
st.pyplot(fig)
|
435 |
+
new_line()
|
436 |
+
|
437 |
+
# Pair Plots for Numerical Features
|
438 |
+
pairplot = st.checkbox("Show Pair Plots", value=False)
|
439 |
+
new_line()
|
440 |
+
if pairplot:
|
441 |
+
sns.pairplot(df.select_dtypes(include=np.number))
|
442 |
+
st.pyplot()
|
443 |
+
|
444 |
+
# Count Plots for Categorical Data
|
445 |
+
countplot = st.checkbox("Show Count Plots", value=False)
|
446 |
+
new_line()
|
447 |
+
if countplot:
|
448 |
+
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
|
449 |
+
col_for_count = st.selectbox("Select Column for Count Plot", options=categorical_cols)
|
450 |
+
fig, ax = plt.subplots()
|
451 |
+
sns.countplot(x=df[col_for_count], data=df, ax=ax)
|
452 |
+
ax.set_title(f'Count Plot of {col_for_count}')
|
453 |
+
st.pyplot(fig)
|
454 |
+
new_line()
|
455 |
+
|
456 |
+
# Pie Charts for Categorical Data
|
457 |
+
pie_chart = st.checkbox("Show Pie Charts", value=False)
|
458 |
+
new_line()
|
459 |
+
if pie_chart:
|
460 |
+
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
|
461 |
+
col_for_pie = st.selectbox("Select Column for Pie Chart", options=categorical_cols)
|
462 |
+
pie_data = df[col_for_pie].value_counts()
|
463 |
+
fig, ax = plt.subplots()
|
464 |
+
ax.pie(pie_data, labels=pie_data.index, autopct='%1.1f%%', startangle=90)
|
465 |
+
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
|
466 |
+
ax.set_title(f'Pie Chart of {col_for_pie}')
|
467 |
+
st.pyplot(fig)
|
468 |
+
new_line()
|
469 |
+
|
470 |
+
# Feature Importance (Only if a model has been trained)
|
471 |
+
if 'trained_model' in st.session_state and st.session_state.trained_model is not None:
|
472 |
+
feature_importance = st.checkbox("Show Feature Importance", value=False)
|
473 |
+
new_line()
|
474 |
+
if feature_importance:
|
475 |
+
model = st.session_state.trained_model
|
476 |
+
importances = pd.Series(model.feature_importances_, index=X_train.columns)
|
477 |
+
fig, ax = plt.subplots()
|
478 |
+
importances.sort_values().plot(kind='barh', ax=ax)
|
479 |
+
ax.set_title('Feature Importance')
|
480 |
+
st.pyplot(fig)
|
481 |
+
new_line()
|
482 |
+
|
483 |
+
# Interactive Data Tables
|
484 |
+
interactive_table = st.checkbox("Show Interactive Data Table", value=False)
|
485 |
+
new_line()
|
486 |
+
if interactive_table:
|
487 |
+
st.dataframe(df)
|
488 |
+
new_line()
|
489 |
+
|
490 |
|
491 |
|
492 |
# Missing Values
|