Spaces:
Sleeping
Sleeping
File size: 43,602 Bytes
3493bd5 c2aa29e 3493bd5 47df6d0 3493bd5 525abfb a4163a0 3493bd5 525abfb 823905c 525abfb 8b4a2fa 525abfb 3493bd5 525abfb 3493bd5 9d25484 8b4a2fa 3493bd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
import streamlit as st
import pandas as pd
import numpy as np
import PIL.Image as Image
# Config
page_icon = Image.open("./assets/icon.png")
st.set_page_config(layout="centered", page_title="Click ML", page_icon=page_icon)
if 'df' not in st.session_state:
st.session_state.df = None
if "delete_features" not in st.session_state:
st.session_state.delete_features = None
if "missing_done" not in st.session_state:
st.session_state.missing_done = False
if "cat_enc_done" not in st.session_state:
st.session_state.cat_enc_done = False
if "num_scale_done" not in st.session_state:
st.session_state.num_scale_done = False
if "split_done" not in st.session_state:
st.session_state.split_done = False
if "X_train" not in st.session_state:
st.session_state.X_train = None
if "X_test" not in st.session_state:
st.session_state.X_test = None
if "y_train" not in st.session_state:
st.session_state.y_train = None
if "y_test" not in st.session_state:
st.session_state.y_test = None
if "X_val" not in st.session_state:
st.session_state.X_val = None
if "y_val" not in st.session_state:
st.session_state.y_val = None
if "split_type" not in st.session_state:
st.session_state.split_type = None
if "build_model_done" not in st.session_state:
st.session_state.build_model_done = False
if "no_svm" not in st.session_state:
st.session_state.no_svm = False
def new_line():
st.write("\n")
with st.sidebar:
st.image("./assets/logo.png", use_column_width=True)
st.markdown("<h1 style='text-align: center; '>π Click Analytics</h1>", unsafe_allow_html=True)
st.markdown("QuickML is a tool that helps you to build a Machine Learning model in just a few clicks.", unsafe_allow_html=True)
st.divider()
st.header("Upload Your CSV File")
uploaded_file = st.file_uploader("Upload the Dataset", type=["csv", "xlsx", "xls"])
st.divider()
if uploaded_file:
if st.session_state.df is None:
# Read CSV or Excel file
if uploaded_file.name.endswith('.csv'):
st.session_state.df = pd.read_csv(uploaded_file)
elif uploaded_file.name.endswith('.xlsx') or uploaded_file.name.endswith('.xls'):
st.session_state.df = pd.read_excel(uploaded_file)
else:
st.error("Unsupported file format. Only CSV and Excel files are supported.")
else:
df = st.session_state.df
st.dataframe(df)
new_line()
# The Dataset
st.subheader("π¬ Dataset", anchor=False)
new_line()
st.dataframe(df, use_container_width=True)
new_line()
# Delete Features from the dataset
st.subheader("ποΈ Delete Features", anchor=False)
new_line()
if not st.session_state.delete_features:
delete_features = st.multiselect("Select the features you want to delete from the dataset", df.columns.tolist())
new_line()
if delete_features:
col1, col2, col3 = st.columns([1, 0.5, 1])
if col2.button("Apply", key="delete"):
st.session_state.delete_features = True
st.session_state.df = df.drop(delete_features, axis=1)
if st.session_state.delete_features:
st.success("Features deleted successfully. You can now proceed to Handling Missing Values.")
# Missing Values
st.subheader("β οΈ Missing Values", anchor=False)
if sum(df.isnull().sum().values.tolist()) != 0:
new_line()
# st.warning("There are missing values in the dataset. Please handle them before proceeding.")
new_line()
col1, col2 = st.columns(2)
col1.markdown("<h6 style='text-align: center; '>Handling Numerical Features</h3>", unsafe_allow_html=True)
col1.write("\n")
missing_num_meth = col1.selectbox("Select the method to handle missing values in numerical features", ["Mean", "Median", "Mode", "ffil and bfil", "Drop the rows"])
if df.select_dtypes(include=np.number).columns.tolist():
num_feat = df.select_dtypes(include=np.number).columns.tolist()
col2.markdown("<h6 style='text-align: center; '>Handling Categorical Features</h3>", unsafe_allow_html=True)
col2.write("\n")
missing_cat_meth = col2.selectbox("Select the method to handle missing values in categorical features", ["Mode", "Drop the rows"])
if df.select_dtypes(include=np.object).columns.tolist():
cat_feat = df.select_dtypes(include=np.object).columns.tolist()
new_line()
if missing_num_meth and missing_cat_meth:
cola, colb, colc = st.columns([1,0.5,1])
if colb.button("Apply", key="missing"):
st.session_state.missing_done = True
# If Numerical Features are present
if df.select_dtypes(include=np.number).columns.tolist():
if missing_num_meth == "Mean":
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
df[num_feat] = imputer.fit_transform(df[num_feat])
st.session_state.df = df
elif missing_num_meth == "Median":
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
df[num_feat] = imputer.fit_transform(df[num_feat])
st.session_state.df = df
elif missing_num_meth == "Mode":
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
df[num_feat] = imputer.fit_transform(df[num_feat])
st.session_state.df = df
elif missing_num_meth == "ffil and bfil":
df[num_feat] = df[num_feat].fillna(method='ffill').fillna(method='bfill')
st.session_state.df = df
elif missing_num_meth == "Drop the rows":
df[num_feat].dropna(inplace=True)
st.session_state.df = df
# If Categorical Features are present
if df.select_dtypes(include=np.object).columns.tolist():
if missing_cat_meth == "Mode":
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
df[cat_feat] = imputer.fit_transform(df[cat_feat])
st.session_state.df = df
elif missing_cat_meth == "Drop the rows":
df[cat_feat].dropna(inplace=True)
st.session_state.df = df
st.success("Missing values handled successfully. You can now proceed to Encoding Categorical Features.")
else:
st.session_state.missing_done = True
st.success("No missing values found in the dataset.")
# Encoding Categorical Features
if st.session_state.missing_done:
new_line()
st.subheader("β’οΈ Encoding Categorical Features", anchor=False)
new_line()
if len(df.select_dtypes(include=np.object).columns.tolist()) > 0:
# st.warning("There are categorical features in the dataset. Please encode them before proceeding.")
new_line()
st.markdown("<h6 style='text-align: center; '>Select the method to encode categorical features</h3>", unsafe_allow_html=True)
new_line()
cat_enc_meth = st.selectbox("Select the method to encode categorical features", ["Ordinal Encoding", "One Hot Encoding", "Count Frequency Encoding"])
new_line()
if cat_enc_meth:
col1, col2, col3 = st.columns([1, 0.5, 1])
if col2.button("Apply", key="cat_enc"):
st.session_state.cat_enc_done = True
cat_cols = df.select_dtypes(include=np.object).columns.tolist()
if cat_enc_meth == "Ordinal Encoding":
from sklearn.preprocessing import OrdinalEncoder
oe = OrdinalEncoder()
df[cat_cols] = oe.fit_transform(df[cat_cols])
st.session_state.df = df
elif cat_enc_meth == "One Hot Encoding":
df = pd.get_dummies(df, columns=cat_cols)
st.session_state.df = df
elif cat_enc_meth == "Count Frequency Encoding":
for col in cat_cols:
df[col] = df[col].map(df[col].value_counts() / len(df))
st.session_state.df = df
st.success("Categorical features encoded successfully. You can now proceed to Scaling & Transformation.")
else:
st.session_state.cat_enc_done = True
st.success("No categorical features found in the dataset.")
# Scaling & Transforming Numerical Features
if st.session_state.cat_enc_done and st.session_state.missing_done:
new_line()
st.subheader("𧬠Scaling & Transformation", anchor=False)
new_line()
if not st.session_state.num_scale_done:
if len(df.select_dtypes(include=np.number).columns.tolist()) > 0:
# st.info("There are numerical features in the dataset. You can Scale and Transform them.")
new_line()
st.markdown("<h6 style='text-align: left; '>Select the method to scale and transform numerical features</h3>", unsafe_allow_html=True)
new_line()
col1, col2 = st.columns(2)
not_scale = col1.multiselect("Select the features you **don't** want to scale and transform **__Include the traget feature if it is Classification problem__**", df.select_dtypes(include=np.number).columns.tolist())
num_scale_meth = col2.selectbox("Select the method to scale and transform numerical features", ["Standard Scaler", "MinMax Scaler", "Robust Scaler", "Log Transformation", "Square Root Transformation"])
new_line()
if num_scale_meth:
col1, col2, col3 = st.columns([1, 0.5, 1])
if col2.button("Apply", key="num_scale"):
st.session_state.num_scale_done = True
if not_scale:
num_cols = df.select_dtypes(include=np.number).columns.tolist()
# Delete the features that are not selected
for not_scale_feat in not_scale:
num_cols.remove(not_scale_feat)
else:
num_cols = df.select_dtypes(include=np.number).columns.tolist()
if num_scale_meth == "Standard Scaler":
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
df[num_cols] = ss.fit_transform(df[num_cols])
st.session_state.df = df
elif num_scale_meth == "MinMax Scaler":
from sklearn.preprocessing import MinMaxScaler
mms = MinMaxScaler()
df[num_cols] = mms.fit_transform(df[num_cols])
st.session_state.df = df
elif num_scale_meth == "Robust Scaler":
from sklearn.preprocessing import RobustScaler
rs = RobustScaler()
df[num_cols] = rs.fit_transform(df[num_cols])
st.session_state.df = df
elif num_scale_meth == "Log Transformation":
df[num_cols] = np.log(df[num_cols])
st.session_state.df = df
elif num_scale_meth == "Square Root Transformation":
df[num_cols] = np.sqrt(df[num_cols])
st.session_state.df = df
st.success("Numerical features scaled and transformed successfully. You can now proceed to Splitting the dataset.")
else:
st.warning("No numerical features found in the dataset. There is something wrong with the dataset. Please check it again.")
else:
st.session_state.num_scale_done = True
st.success("Numerical features scaled and transformed successfully. You can now proceed to Splitting the dataset.")
# Splitting the dataset
if st.session_state.cat_enc_done and st.session_state.missing_done:
new_line()
st.subheader("βοΈ Splitting the dataset", anchor=False)
new_line()
if not st.session_state.split_done:
# st.info("You can now split the dataset into Train, Validation and Test sets.")
new_line()
col1, col2 = st.columns(2)
target = col1.selectbox("Select the target variable", df.columns.tolist())
sets = col2.selectbox("Select the type of split", ["Train and Test", "Train, Validation and Test"])
st.session_state.split_type = sets
col1, col2, col3 = st.columns([1, 0.5, 1])
if col2.button("Apply", key="split"):
st.session_state.split_done = True
if sets == "Train and Test":
from sklearn.model_selection import train_test_split
X = df.drop(target, axis=1)
y = df[target]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
st.session_state.X_train = X_train
st.session_state.X_test = X_test
st.session_state.y_train = y_train
st.session_state.y_test = y_test
st.success("Dataset split successfully. You can now proceed to Building the model.")
elif sets == "Train, Validation and Test":
from sklearn.model_selection import train_test_split
X = df.drop(target, axis=1)
y = df[target]
X_train, X_rem, y_train, y_rem = train_test_split(X, y, test_size=0.3, random_state=42)
X_test, X_val, y_test, y_val = train_test_split(X_rem, y_rem, test_size=0.5, random_state=42)
st.session_state.X_train = X_train
st.session_state.X_test = X_test
st.session_state.X_val = X_val
st.session_state.y_train = y_train
st.session_state.y_test = y_test
st.session_state.y_val = y_val
st.success("Dataset split successfully. You can now proceed to Building the model.")
else:
if len(str(st.session_state.split_type).split()) == 4:
st.success("Dataset split successfully into Training, Validation and Test sets. You can now proceed to Building the model.")
elif len(st.session_state.split_type.split()) == 3:
st.success("Dataset split successfully into Training and Test sets. You can now proceed to Building the model.")
# Building the model
if st.session_state.split_done:
new_line()
st.subheader("π§ Building the model", anchor=False)
target, problem_type, model = None, None, None
new_line()
col1, col2, col3 = st.columns(3)
target = col1.selectbox("Select the target variable", df.columns.tolist(), key="target_model")
problem_type = col2.selectbox("Select the problem type", ["Classification", "Regression"])
if problem_type == "Classification":
model = col3.selectbox("Select the model", ["Logistic Regression", "K Nearest Neighbors", "Support Vector Machine", "Decision Tree", "Random Forest", "XGBoost", "LightGBM", "CatBoost"])
elif problem_type == "Regression":
model = col3.selectbox("Select the model", ["Linear Regression", "K Nearest Neighbors", "Support Vector Machine", "Decision Tree", "Random Forest", "XGBoost", "LightGBM", "CatBoost"])
new_line()
if target and problem_type and model:
col1, col2, col3 = st.columns([1,0.8,1])
if col2.button("Apply", key="build_model", use_container_width=True):
st.session_state.build_model_done = True
if problem_type == "Classification":
if model == "Logistic Regression":
from sklearn.linear_model import LogisticRegression
import pickle
lr = LogisticRegression()
lr.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(lr, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open("model.pkl", "rb")
model_bytes = model_file.read()
col2.download_button("Download Model", model_bytes, "model.pkl", key='class_log_reg', use_container_width=True)
elif model == "K Nearest Neighbors":
from sklearn.neighbors import KNeighborsClassifier
import pickle
knn = KNeighborsClassifier()
knn.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(knn, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open("model.pkl", "rb")
model_bytes = model_file.read()
col2.download_button("Download Model", model_bytes, "model.pkl", key='class_knn', use_container_width=True)
elif model == "Support Vector Machine":
from sklearn.svm import SVC
import pickle
st.session_state.no_svm = True
svm = SVC()
svm.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(svm, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open("model.pkl", "rb")
model_bytes = model_file.read()
col2.download_button("Download Model", model_bytes, "model.pkl", key='class_svm', use_container_width=True)
elif model == "Decision Tree":
from sklearn.tree import DecisionTreeClassifier
import pickle
dt = DecisionTreeClassifier()
dt.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(dt, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open("model.pkl", "rb")
model_bytes = model_file.read()
col2.download_button("Download Model", model_bytes, "model.pkl", key='class_dt', use_container_width=True)
elif model == "Random Forest":
from sklearn.ensemble import RandomForestClassifier
import pickle
rf = RandomForestClassifier()
rf.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(rf, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open("model.pkl", "rb")
model_bytes = model_file.read()
col2.download_button("Download Model", model_bytes, "model.pkl", key='class_rf', use_container_width=True)
elif model == "XGBoost":
from xgboost import XGBClassifier
import pickle
xgb = XGBClassifier()
xgb.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(xgb, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open("model.pkl", "rb")
model_bytes = model_file.read()
col2.download_button("Download Model", model_bytes, "model.pkl", key='class_xgb', use_container_width=True)
elif model == "LightGBM":
from lightgbm import LGBMClassifier
import pickle
lgbm = LGBMClassifier()
lgbm.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(lgbm, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open("model.pkl", "rb")
model_bytes = model_file.read()
col2.download_button("Download Model", model_bytes, "model.pkl", key='class_lgbm', use_container_width=True)
elif model == "CatBoost":
from catboost import CatBoostClassifier
import pickle
cb = CatBoostClassifier()
cb.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(cb, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open("model.pkl", "rb")
model_bytes = model_file.read()
col2.download_button("Download Model", model_bytes, "model.pkl", key='class_cb', use_container_width=True)
elif problem_type == "Regression":
if model == "Linear Regression":
from sklearn.linear_model import LinearRegression
import pickle
lr = LinearRegression()
lr.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(lr, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open("model.pkl", "rb")
model_bytes = model_file.read()
col2.download_button("Download Model", model_bytes, "model.pkl", key="reg_lin_reg", use_container_width=True)
elif model == "K Nearest Neighbors":
from sklearn.neighbors import KNeighborsRegressor
import pickle
knn = KNeighborsRegressor()
knn.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(knn, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open("model.pkl", "rb")
model_bytes = model_file.read()
col2.download_button("Download Model", model_bytes, "model.pkl", key="reg_knn", use_container_width=True)
elif model == "Support Vector Machine":
from sklearn.svm import SVR
import pickle
svm = SVR()
svm.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(svm, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open("model.pkl", "rb")
model_bytes = model_file.read()
col2.download_button("Download Model", model_bytes, "model.pkl", key="reg_svm", use_container_width=True)
elif model == "Decision Tree":
from sklearn.tree import DecisionTreeRegressor
import pickle
dt = DecisionTreeRegressor()
dt.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(dt, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open("model.pkl", "rb")
model_bytes = model_file.read()
col2.download_button("Download Model", model_bytes, "model.pkl", key="reg_dt", use_container_width=True)
elif model == "Random Forest":
from sklearn.ensemble import RandomForestRegressor
import pickle
rf = RandomForestRegressor()
rf.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(rf, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open("model.pkl", "rb")
model_bytes = model_file.read()
col2.download_button('Download Model', model_bytes, 'model.pkl', key="reg_rf", use_container_width=True)
elif model == "XGBoost":
from xgboost import XGBRegressor
import pickle
xgb = XGBRegressor()
xgb.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(xgb, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open('model.pkl', 'rb')
model_bytes = model_file.read()
col2.download_button('Download Model', model_bytes, 'model.pkl', key="reg_xgb", use_container_width=True)
elif model == "LightGBM":
from lightgbm import LGBMRegressor
import pickle
lgbm = LGBMRegressor()
lgbm.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(lgbm, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open('model.pkl', 'rb')
model_bytes = model_file.read()
col2.download_button('Download Model', model_bytes, 'model.pkl', key="reg_lgbm", use_container_width=True)
elif model == "CatBoost":
from catboost import CatBoostRegressor
import pickle
cb = CatBoostRegressor()
cb.fit(st.session_state.X_train, st.session_state.y_train)
pickle.dump(cb, open('model.pkl','wb'))
st.success("Model built successfully. You can now proceed to Evaluation.")
model_file = open('model.pkl', 'rb')
model_bytes = model_file.read()
col2.download_button('Download Model', model_bytes, 'model.pkl', key="reg_cb", use_container_width=True)
# # Evaluation
if st.session_state.build_model_done:
new_line()
st.subheader("Evaluation", anchor=False)
new_line()
# with st.expander("Show Evaluation Metrics"):
if st.session_state.split_type == "Train and Test":
if problem_type == "Classification":
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix
import pickle
model = pickle.load(open('model.pkl','rb'))
y_pred = model.predict(st.session_state.X_test)
if not st.session_state.no_svm:
y_prob = model.predict_proba(st.session_state.X_test)[:,1]
# Dataframe to store the metrics values for each set
metrics_df = pd.DataFrame(columns=["Accuracy", "Precision", "Recall", "F1", "ROC AUC"], index=["Train", "Test"])
metrics_df.loc["Train", "Accuracy"] = accuracy_score(st.session_state.y_train, model.predict(st.session_state.X_train))
metrics_df.loc["Train", "Precision"] = precision_score(st.session_state.y_train, model.predict(st.session_state.X_train))
metrics_df.loc["Train", "Recall"] = recall_score(st.session_state.y_train, model.predict(st.session_state.X_train))
metrics_df.loc["Train", "F1"] = f1_score(st.session_state.y_train, model.predict(st.session_state.X_train))
if not st.session_state.no_svm:
metrics_df.loc["Train", "ROC AUC"] = roc_auc_score(st.session_state.y_train, model.predict_proba(st.session_state.X_train)[:,1])
metrics_df.loc["Test", "Accuracy"] = accuracy_score(st.session_state.y_test, y_pred)
metrics_df.loc["Test", "Precision"] = precision_score(st.session_state.y_test, y_pred)
metrics_df.loc["Test", "Recall"] = recall_score(st.session_state.y_test, y_pred)
metrics_df.loc["Test", "F1"] = f1_score(st.session_state.y_test, y_pred)
metrics_df.loc["Test", "ROC AUC"] = roc_auc_score(st.session_state.y_test, y_prob)
new_line()
# Plot the other metrics using plotly
st.markdown("#### Metrics Plot")
import plotly.graph_objects as go
fig = go.Figure(data=[
go.Bar(name='Train', x=metrics_df.columns.tolist(), y=metrics_df.loc["Train", :].values.tolist()),
go.Bar(name='Test', x=metrics_df.columns.tolist(), y=metrics_df.loc["Test", :].values.tolist())
])
st.plotly_chart(fig)
# Plot the ROC Curve using px
import plotly.express as px
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(st.session_state.y_test, y_prob)
fig = px.area(
x=fpr, y=tpr,
title=f'ROC Curve (AUC={metrics_df.loc["Test", "ROC AUC"]:.4f})',
labels=dict(x='False Positive Rate', y='True Positive Rate'),
width=400, height=500
)
fig.add_shape(
type='line', line=dict(dash='dash'),
x0=0, x1=1, y0=0, y1=1
)
fig.update_yaxes(scaleanchor="x", scaleratio=1)
fig.update_xaxes(constrain='domain')
st.plotly_chart(fig)
# Display the metrics values
new_line()
st.markdown("##### Metrics Values")
st.write(metrics_df)
# Plot confusion matrix as plot with plot_confusion_matrix
# from sklearn.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
st.markdown("#### Confusion Matrix")
new_line()
model = pickle.load(open('model.pkl','rb'))
y_pred = model.predict(st.session_state.X_test)
# cm = confusion_matrix(y_test, y_pred_test)
fig, ax = plt.subplots(figsize=(6,6))
ConfusionMatrixDisplay.from_predictions(st.session_state.y_test, y_pred, ax=ax)
st.pyplot(fig)
elif problem_type == "Regression":
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import pickle
model = pickle.load(open('model.pkl','rb'))
y_pred = model.predict(st.session_state.X_test)
# Dataframe to store the metrics values for each set with RMSE
metrics_df = pd.DataFrame(columns=["Mean Squared Error", "Mean Absolute Error", "R2 Score"], index=["Train", "Test"])
metrics_df.loc["Train", "Mean Squared Error"] = mean_squared_error(st.session_state.y_train, model.predict(st.session_state.X_train))
metrics_df.loc["Train", "Mean Absolute Error"] = mean_absolute_error(st.session_state.y_train, model.predict(st.session_state.X_train))
metrics_df.loc["Train", "R2 Score"] = r2_score(st.session_state.y_train, model.predict(st.session_state.X_train))
metrics_df.loc['Train', 'RMSE'] = np.sqrt(metrics_df.loc['Train', 'Mean Squared Error'])
metrics_df.loc["Test", "Mean Squared Error"] = mean_squared_error(st.session_state.y_test, y_pred)
metrics_df.loc["Test", "Mean Absolute Error"] = mean_absolute_error(st.session_state.y_test, y_pred)
metrics_df.loc["Test", "R2 Score"] = r2_score(st.session_state.y_test, y_pred)
metrics_df.loc['Test', 'RMSE'] = np.sqrt(metrics_df.loc['Test', 'Mean Squared Error'])
new_line()
# Plot the other metrics using plotly
st.markdown("#### Metrics Plot")
import plotly.graph_objects as go
fig = go.Figure(data=[
go.Bar(name='Train', x=metrics_df.columns.tolist(), y=metrics_df.loc["Train", :].values.tolist()),
go.Bar(name='Test', x=metrics_df.columns.tolist(), y=metrics_df.loc["Test", :].values.tolist())
])
st.plotly_chart(fig)
# Display the metrics values
new_line()
st.markdown("##### Metrics Values")
st.write(metrics_df)
elif st.session_state.split_type == "Train, Validation and Test":
if problem_type == "Classification":
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix
import pickle
model = pickle.load(open('model.pkl','rb'))
y_pred = model.predict(st.session_state.X_test)
if not st.session_state.no_svm:
y_prob = model.predict_proba(st.session_state.X_test)[:,1]
# Dataframe to store the metrics values for each set
metrics_df = pd.DataFrame(columns=["Accuracy", "Precision", "Recall", "F1", "ROC AUC"], index=["Train", "Validation", "Test"])
metrics_df.loc["Train", "Accuracy"] = accuracy_score(st.session_state.y_train, model.predict(st.session_state.X_train))
metrics_df.loc["Train", "Precision"] = precision_score(st.session_state.y_train, model.predict(st.session_state.X_train))
metrics_df.loc["Train", "Recall"] = recall_score(st.session_state.y_train, model.predict(st.session_state.X_train))
metrics_df.loc["Train", "F1"] = f1_score(st.session_state.y_train, model.predict(st.session_state.X_train))
if not st.session_state.no_svm:
metrics_df.loc["Train", "ROC AUC"] = roc_auc_score(st.session_state.y_train, model.predict_proba(st.session_state.X_train)[:,1])
metrics_df.loc["Validation", "Accuracy"] = accuracy_score(st.session_state.y_val, model.predict(st.session_state.X_val))
metrics_df.loc["Validation", "Precision"] = precision_score(st.session_state.y_val, model.predict(st.session_state.X_val))
metrics_df.loc["Validation", "Recall"] = recall_score(st.session_state.y_val, model.predict(st.session_state.X_val))
metrics_df.loc["Validation", "F1"] = f1_score(st.session_state.y_val, model.predict(st.session_state.X_val))
if not st.session_state.no_svm:
metrics_df.loc["Validation", "ROC AUC"] = roc_auc_score(st.session_state.y_val, model.predict_proba(st.session_state.X_val)[:,1])
metrics_df.loc["Test", "Accuracy"] = accuracy_score(st.session_state.y_test, y_pred)
metrics_df.loc["Test", "Precision"] = precision_score(st.session_state.y_test, y_pred)
metrics_df.loc["Test", "Recall"] = recall_score(st.session_state.y_test, y_pred)
metrics_df.loc["Test", "F1"] = f1_score(st.session_state.y_test, y_pred)
if not st.session_state.no_svm:
metrics_df.loc["Test", "ROC AUC"] = roc_auc_score(st.session_state.y_test, y_prob)
new_line()
# Plot the other metrics using plotly
st.markdown("#### Metrics Plot")
import plotly.graph_objects as go
fig = go.Figure(data=[
go.Bar(name='Train', x=metrics_df.columns.tolist(), y=metrics_df.loc["Train", :].values.tolist()),
go.Bar(name='Validation', x=metrics_df.columns.tolist(), y=metrics_df.loc["Validation", :].values.tolist()),
go.Bar(name='Test', x=metrics_df.columns.tolist(), y=metrics_df.loc["Test", :].values.tolist())
])
st.plotly_chart(fig)
# Plot the ROC Curve using px
if not st.session_state.no_svm:
import plotly.express as px
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(st.session_state.y_test, y_prob)
fig = px.area(
x=fpr, y=tpr,
title=f'ROC Curve (AUC={metrics_df.loc["Test", "ROC AUC"]:.4f})',
labels=dict(x='False Positive Rate', y='True Positive Rate'),
width=400, height=500
)
fig.add_shape(
type='line', line=dict(dash='dash'),
x0=0, x1=1, y0=0, y1=1
)
fig.update_yaxes(scaleanchor="x", scaleratio=1)
fig.update_xaxes(constrain='domain')
st.plotly_chart(fig)
# Display the metrics values
new_line()
st.markdown("##### Metrics Values")
st.write(metrics_df)
# Plot confusion matrix as plot with plot_confusion_matrix
# from sklearn.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
st.markdown("#### Confusion Matrix")
new_line()
model = pickle.load(open('model.pkl','rb'))
y_pred = model.predict(st.session_state.X_test)
# cm = confusion_matrix(y_test, y_pred_test)
fig, ax = plt.subplots(figsize=(6,6))
ConfusionMatrixDisplay.from_predictions(st.session_state.y_test, y_pred, ax=ax)
st.pyplot(fig)
elif problem_type == "Regression":
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import pickle
model = pickle.load(open('model.pkl','rb'))
y_pred = model.predict(st.session_state.X_test)
# Dataframe to store the metrics values for each set with RMSE
metrics_df = pd.DataFrame(columns=["Mean Squared Error", "Mean Absolute Error", "R2 Score"], index=["Train", "Validation", "Test"])
metrics_df.loc["Train", "Mean Squared Error"] = mean_squared_error(st.session_state.y_train, model.predict(st.session_state.X_train))
metrics_df.loc["Train", "Mean Absolute Error"] = mean_absolute_error(st.session_state.y_train, model.predict(st.session_state.X_train))
metrics_df.loc["Train", "R2 Score"] = r2_score(st.session_state.y_train, model.predict(st.session_state.X_train))
metrics_df.loc['Train', 'RMSE'] = np.sqrt(metrics_df.loc['Train', 'Mean Squared Error'])
metrics_df.loc["Validation", "Mean Squared Error"] = mean_squared_error(st.session_state.y_val, model.predict(st.session_state.X_val))
metrics_df.loc["Validation", "Mean Absolute Error"] = mean_absolute_error(st.session_state.y_val, model.predict(st.session_state.X_val))
metrics_df.loc["Validation", "R2 Score"] = r2_score(st.session_state.y_val, model.predict(st.session_state.X_val))
metrics_df.loc['Validation', 'RMSE'] = np.sqrt(metrics_df.loc['Validation', 'Mean Squared Error'])
metrics_df.loc["Test", "Mean Squared Error"] = mean_squared_error(st.session_state.y_test, y_pred)
metrics_df.loc["Test", "Mean Absolute Error"] = mean_absolute_error(st.session_state.y_test, y_pred)
metrics_df.loc["Test", "R2 Score"] = r2_score(st.session_state.y_test, y_pred)
metrics_df.loc['Test', 'RMSE'] = np.sqrt(metrics_df.loc['Test', 'Mean Squared Error'])
new_line()
# Plot the other metrics using plotly
st.markdown("#### Metrics Plot")
import plotly.graph_objects as go
fig = go.Figure(data=[
go.Bar(name='Train', x=metrics_df.columns.tolist(), y=metrics_df.loc["Train", :].values.tolist()),
go.Bar(name='Validation', x=metrics_df.columns.tolist(), y=metrics_df.loc["Validation", :].values.tolist()),
go.Bar(name='Test', x=metrics_df.columns.tolist(), y=metrics_df.loc["Test", :].values.tolist())
])
st.plotly_chart(fig)
# Display the metrics values
new_line()
st.markdown("##### Metrics Values")
st.write(metrics_df)
|