Matthijs Hollemans
let's try a classifier first
8239775
raw
history blame
430 Bytes
import gradio as gr
from transformers import pipeline
pipeline = pipeline(task="image-classification", model="apple/mobilevit-small")
def predict(image):
predictions = pipeline(image)
return {p["label"]: p["score"] for p in predictions}
gr.Interface(
fn=predict,
inputs=gr.inputs.Image(label="Upload image", type="filepath"),
outputs=gr.outputs.Label(num_top_classes=5),
title="This is a title",
).launch()