from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import random from .utils.evaluation import TextEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info from transformers import AutoTokenizer,BertForSequenceClassification,AutoModelForSequenceClassification,Trainer, TrainingArguments,DataCollatorWithPadding from datasets import Dataset import torch import numpy as np router = APIRouter() DESCRIPTION = "modernBERT_finetuned" ROUTE = "/text" @router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION) async def evaluate_text(request: TextEvaluationRequest): """ Evaluate text classification for climate disinformation detection. Current Model: Random Baseline - Makes random predictions from the label space (0-7) - Used as a baseline for comparison """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "0_not_relevant": 0, "1_not_happening": 1, "2_not_human": 2, "3_not_bad": 3, "4_solutions_harmful_unnecessary": 4, "5_science_unreliable": 5, "6_proponents_biased": 6, "7_fossil_fuels_needed": 7 } # Load and prepare the dataset dataset = load_dataset(request.dataset_name) # Convert string labels to integers dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) # Split dataset train_test = dataset["train"] test_dataset = dataset["test"] # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- # Make random predictions (placeholder for actual model inference) true_labels = test_dataset["label"] predictions = [random.randint(0, 7) for _ in range(len(true_labels))] path_model = 'MatthiasPicard/checkpoint4200_batch16_modern_bert_valloss_0.79_0.74acc' path_tokenizer = "answerdotai/ModernBERT-base" model = AutoModelForSequenceClassification.from_pretrained(path_model) tokenizer = AutoTokenizer.from_pretrained(path_tokenizer) def preprocess_function(df): return tokenizer(df["quote"], truncation=True) tokenized_test = test_dataset.map(preprocess_function, batched=True) # training_args = torch.load("training_args.bin") # training_args.eval_strategy='no' trainer = Trainer( model=model, # args=training_args, tokenizer=tokenizer ) preds = trainer.predict(tokenized_test) # path_model = 'MatthiasPi/modernbert_finetunedV1' # path_tokenizer = "answerdotai/ModernBERT-base" # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # model = AutoModelForSequenceClassification.from_pretrained(path_model).to(device).eval() # tokenizer = AutoTokenizer.from_pretrained(path_tokenizer) # model.half() # # Use optimized tokenization # def preprocess_function(df): # return tokenizer(df["quote"], truncation=True, padding="max_length") # tokenized_test = test_dataset.map(preprocess_function, batched=True) # # Convert dataset to PyTorch tensors for efficient inference # def collate_fn(batch): # input_ids = torch.tensor([example["input_ids"] for example in batch]).to(device) # attention_mask = torch.tensor([example["attention_mask"] for example in batch]).to(device) # return {"input_ids": input_ids, "attention_mask": attention_mask} # Optimized inference function # def predict(dataset, batch_size=16): # all_preds = [] # with torch.no_grad(): # No gradient computation (saves energy) # for batch in torch.utils.data.DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn): # outputs = model(**batch) # preds = torch.argmax(outputs.logits, dim=-1).cpu().numpy() # all_preds.extend(preds) # return np.array(all_preds) # Run inference # predictions = predict(tokenized_test) # print(predictions) predictions = np.array([np.argmax(x) for x in preds[0]]) #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(true_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results