Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import random | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
from transformers import AutoTokenizer,BertForSequenceClassification,AutoModelForSequenceClassification,Trainer, TrainingArguments,DataCollatorWithPadding | |
from datasets import Dataset | |
import torch | |
import numpy as np | |
router = APIRouter() | |
DESCRIPTION = "modernBERT_finetuned" | |
ROUTE = "/text" | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification for climate disinformation detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-7) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert string labels to integers | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Split dataset | |
train_test = dataset["train"] | |
test_dataset = dataset["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. | |
#-------------------------------------------------------------------------------------------- | |
# Make random predictions (placeholder for actual model inference) | |
true_labels = test_dataset["label"] | |
predictions = [random.randint(0, 7) for _ in range(len(true_labels))] | |
path_model = 'MatthiasPicard/checkpoint4200_batch16_modern_bert_valloss_0.79_0.74acc' | |
path_tokenizer = "answerdotai/ModernBERT-base" | |
model = AutoModelForSequenceClassification.from_pretrained(path_model) | |
tokenizer = AutoTokenizer.from_pretrained(path_tokenizer) | |
def preprocess_function(df): | |
return tokenizer(df["quote"], truncation=True) | |
tokenized_test = test_dataset.map(preprocess_function, batched=True) | |
# training_args = torch.load("training_args.bin") | |
# training_args.eval_strategy='no' | |
trainer = Trainer( | |
model=model, | |
# args=training_args, | |
tokenizer=tokenizer | |
) | |
trainer.args.per_device_eval_batch_size = 4 | |
preds = trainer.predict(tokenized_test) | |
# path_model = 'MatthiasPi/modernbert_finetunedV1' | |
# path_tokenizer = "answerdotai/ModernBERT-base" | |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# model = AutoModelForSequenceClassification.from_pretrained(path_model).to(device).eval() | |
# tokenizer = AutoTokenizer.from_pretrained(path_tokenizer) | |
# model.half() | |
# # Use optimized tokenization | |
# def preprocess_function(df): | |
# return tokenizer(df["quote"], truncation=True, padding="max_length") | |
# tokenized_test = test_dataset.map(preprocess_function, batched=True) | |
# # Convert dataset to PyTorch tensors for efficient inference | |
# def collate_fn(batch): | |
# input_ids = torch.tensor([example["input_ids"] for example in batch]).to(device) | |
# attention_mask = torch.tensor([example["attention_mask"] for example in batch]).to(device) | |
# return {"input_ids": input_ids, "attention_mask": attention_mask} | |
# Optimized inference function | |
# def predict(dataset, batch_size=16): | |
# all_preds = [] | |
# with torch.no_grad(): # No gradient computation (saves energy) | |
# for batch in torch.utils.data.DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn): | |
# outputs = model(**batch) | |
# preds = torch.argmax(outputs.logits, dim=-1).cpu().numpy() | |
# all_preds.extend(preds) | |
# return np.array(all_preds) | |
# Run inference | |
# predictions = predict(tokenized_test) | |
# print(predictions) | |
predictions = np.array([np.argmax(x) for x in preds[0]]) | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |