Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,8 +5,9 @@ import os
|
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
from sentence_transformers import SentenceTransformer
|
| 7 |
import requests
|
| 8 |
-
|
| 9 |
-
|
|
|
|
| 10 |
load_dotenv()
|
| 11 |
URL_CARTELLA = os.getenv('URL_CARTELLA')
|
| 12 |
|
|
@@ -156,14 +157,13 @@ def show_source(links) :
|
|
| 156 |
for i, link in enumerate(links) :
|
| 157 |
st.info(f"{link}")
|
| 158 |
|
| 159 |
-
def init_vector_db()
|
| 160 |
persist_directory1 = './DB_Decreti'
|
| 161 |
embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
| 162 |
db = Chroma(persist_directory=persist_directory1, embedding_function=embedding)
|
| 163 |
#NumeroDocumenti = 10
|
| 164 |
#query = 'Come funziona la generazione delle PDA'
|
| 165 |
#result = db.similarity_search(query, k=NumeroDocumenti)
|
| 166 |
-
}
|
| 167 |
|
| 168 |
init_state()
|
| 169 |
sidebar()
|
|
|
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
from sentence_transformers import SentenceTransformer
|
| 7 |
import requests
|
| 8 |
+
from langchain_community.vectorstores import Chroma
|
| 9 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 10 |
+
|
| 11 |
load_dotenv()
|
| 12 |
URL_CARTELLA = os.getenv('URL_CARTELLA')
|
| 13 |
|
|
|
|
| 157 |
for i, link in enumerate(links) :
|
| 158 |
st.info(f"{link}")
|
| 159 |
|
| 160 |
+
def init_vector_db():
|
| 161 |
persist_directory1 = './DB_Decreti'
|
| 162 |
embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
| 163 |
db = Chroma(persist_directory=persist_directory1, embedding_function=embedding)
|
| 164 |
#NumeroDocumenti = 10
|
| 165 |
#query = 'Come funziona la generazione delle PDA'
|
| 166 |
#result = db.similarity_search(query, k=NumeroDocumenti)
|
|
|
|
| 167 |
|
| 168 |
init_state()
|
| 169 |
sidebar()
|