Spaces:
Sleeping
Sleeping
| from huggingface_hub import InferenceClient | |
| import os | |
| from dotenv import load_dotenv | |
| import random | |
| import json | |
| from openai import OpenAI | |
| load_dotenv() | |
| API_TOKEN = os.getenv('HF_TOKEN') | |
| def format_prompt(message, history): | |
| prompt = "<s>" | |
| for user_prompt, bot_response in history: | |
| prompt += f"[INST] {user_prompt} [/INST]" | |
| prompt += f" {bot_response}</s> " | |
| prompt += f"[INST] {message} [/INST]" | |
| return prompt | |
| def format_prompt_openai(system_prompt, message, history): | |
| messages = [] | |
| if system_prompt != '': | |
| messages.append({"role": "system", "content": system_prompt}) | |
| for user_prompt, bot_response in history: | |
| messages.append({"role": "user", "content": user_prompt}) | |
| messages.append({"role": "assistant", "content": bot_response}) | |
| messages.append({"role": "user", "content": message}) | |
| return messages | |
| def chat_huggingface(prompt, history, chat_client, temperature, max_new_tokens, top_p, repetition_penalty): | |
| client = InferenceClient( | |
| chat_client, | |
| token=API_TOKEN | |
| ) | |
| temperature = float(temperature) | |
| if temperature < 1e-2: | |
| temperature = 1e-2 | |
| top_p = float(top_p) | |
| generate_kwargs = dict( | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| do_sample=True, | |
| seed=random.randint(0, 10**7), | |
| ) | |
| formatted_prompt = format_prompt(prompt, history) | |
| print('***************************************************') | |
| print(formatted_prompt) | |
| print('***************************************************') | |
| stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| return stream | |
| def chat_openai(prompt, history, chat_client, temperature, max_new_tokens, top_p, repetition_penalty, client_openai): | |
| try: | |
| prompt = prompt.replace('\n', '') | |
| json_data = json.loads(prompt) | |
| user_prompt = json_data["messages"][1]["content"] | |
| system_prompt = json_data["input"]["content"] | |
| system_style = json_data["input"]["style"] | |
| instructions = json_data["messages"][0]["content"] | |
| if instructions != '': | |
| system_prompt += '\n' + instructions | |
| if system_style != '': | |
| system_prompt += '\n' + system_style | |
| except: | |
| user_prompt = prompt | |
| system_prompt = '' | |
| messages = format_prompt_openai(system_prompt, user_prompt, history) | |
| print('***************************************************') | |
| print(messages) | |
| print('***************************************************') | |
| stream = client_openai.chat.completions.create( | |
| model=chat_client, | |
| stream=True, | |
| messages=messages, | |
| temperature=temperature, | |
| max_tokens=max_new_tokens, | |
| ) | |
| return stream | |
| def chat(prompt, history, chat_client,temperature=0.9, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0, client_openai = None): | |
| if chat_client[:3] == 'gpt': | |
| return chat_openai(prompt, history, chat_client, temperature, max_new_tokens, top_p, repetition_penalty, client_openai) | |
| else: | |
| return chat_huggingface(prompt, history, chat_client, temperature, max_new_tokens, top_p, repetition_penalty) |