import os from huggingface_hub import login from datasets import load_dataset import gradio as gr from llama_cpp import Llama from huggingface_hub import hf_hub_download import chromadb from sentence_transformers import SentenceTransformer # Charger le token depuis les secrets hf_token = os.getenv("HF_TOKEN") # Assurez-vous que 'HF_TOKEN' est bien le nom du secret Hugging Face # Connecting à Hugging Face login(hf_token) # Charger le dataset dataset = load_dataset("Maryem2025/dataset-train") # Changez le nom si nécessaire # Initialisation du modèle Llama llm = Llama( model_path=hf_hub_download( repo_id="TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF", filename="capybarahermes-2.5-mistral-7b.Q2_K.gguf", ), n_ctx=2048, n_gpu_layers=50, # Ajustez selon votre VRAM ) # Initialisation de ChromaDB Vector Store class VectorStore: def __init__(self, collection_name): self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1') self.chroma_client = chromadb.Client() # Supprimer la collection existante si elle existe if collection_name in self.chroma_client.list_collections(): self.chroma_client.delete_collection(collection_name) # Créer une nouvelle collection self.collection = self.chroma_client.create_collection(name=collection_name) def populate_vectors(self, dataset): # Sélectionner les colonnes pertinentes à concaténer names = dataset['train']['name'][:200] ingredients = dataset['train']['ingredients'][:200] instructions = dataset['train']['instructions'][:200] cuisine = dataset['train']['cuisine'][:200] total_time = dataset['train']['total_time'][:200] # Concaténer les textes à partir des colonnes sélectionnées texts = [ f"Name: {name}. Ingredients: {ingr}. Instructions: {instr}. Cuisine: {cui}. Total time: {total} minutes." for name, ingr, instr, cui, total in zip(names, ingredients, instructions, cuisine, total_time) ] # Ajouter les embeddings au store de vecteurs for i, item in enumerate(texts): embeddings = self.embedding_model.encode(item).tolist() self.collection.add(embeddings=[embeddings], documents=[item], ids=[str(i)]) def search_context(self, query, n_results=1): query_embedding = self.embedding_model.encode([query]).tolist() results = self.collection.query(query_embeddings=query_embedding, n_results=n_results) return results['documents'] # Initialisation du store de vecteurs et peuplement dataset = load_dataset('Maryem2025/dataset-test') vector_store = VectorStore("embedding_vector") vector_store.populate_vectors(dataset) # Fonction pour générer du texte def generate_text(message, max_tokens, temperature, top_p): # Récupérer le contexte depuis le store de vecteurs context_results = vector_store.search_context(message, n_results=1) context = context_results[0] if context_results else "" # Créer le modèle de prompt prompt_template = ( f"SYSTEM: You are a recipe generating bot.\n" f"SYSTEM: {context}\n" f"USER: {message}\n" f"ASSISTANT:\n" ) # Générer le texte avec le modèle de langue output = llm( prompt_template, temperature=0.3, top_p=0.95, top_k=40, repeat_penalty=1.1, max_tokens=600, ) # Traiter la sortie input_string = output['choices'][0]['text'].strip() cleaned_text = input_string.strip("[]'").replace('\\n', '\n') continuous_text = '\n'.join(cleaned_text.split('\n')) return continuous_text # Définir l'interface Gradio demo = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(lines=2, placeholder="Enter your message here...", label="Message"), ], outputs=gr.Textbox(label="Generated Text"), title="FALFOUL", description="Running LLM with context retrieval from ChromaDB", examples=[ ["I have rice, what can I make out of it?"], ["I just have some milk and chocolate, what dessert can I make?"], ["Can you suggest a vegan breakfast recipe?"], ["How do I make a perfect scrambled egg?"], ["Can you guide me through making a tajine?"], ], cache_examples=False, ) if __name__ == "__main__": demo.launch(clear_cache=True)