Maryem2025 commited on
Commit
78000ff
·
verified ·
1 Parent(s): 7e887c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -8
app.py CHANGED
@@ -1,4 +1,4 @@
1
- ############ it works , الحمد لله
2
  import os
3
  from huggingface_hub import login
4
  from datasets import load_dataset
@@ -8,13 +8,11 @@ from huggingface_hub import hf_hub_download
8
  import chromadb
9
  from sentence_transformers import SentenceTransformer
10
 
11
- import os
12
- from huggingface_hub import login
13
 
14
  # Charger le token depuis les secrets
15
  hf_token = os.getenv("HF_TOKEN") # Assurez-vous que 'HF_TOKEN' est bien le nom du secret Hugging Face
16
 
17
- # Connecte-toi à Hugging Face
18
  login(hf_token)
19
  # Charger le dataset
20
  dataset = load_dataset("Maryem2025/dataset-train") # Changez le nom si nécessaire
@@ -55,8 +53,7 @@ class VectorStore:
55
  texts = [
56
  f"Name: {name}. Ingredients: {ingr}. Instructions: {instr}. Cuisine: {cui}. Total time: {total} minutes."
57
  for name, ingr, instr, cui, total in zip(names, ingredients, instructions, cuisine, total_time)
58
- #f"Name: {name}. Ingredients: {ingr}. Instructions: {instr}."
59
- #for name, ingr, instr in zip(names, ingredients, instructions)
60
  ]
61
 
62
  # Ajouter les embeddings au store de vecteurs
@@ -111,12 +108,12 @@ demo = gr.Interface(
111
  gr.Textbox(lines=2, placeholder="Enter your message here...", label="Message"),
112
  ],
113
  outputs=gr.Textbox(label="Generated Text"),
114
- title="Chatbot - Your Personal Culinary Advisor: Discover What to Cook Next!",
115
  description="Running LLM with context retrieval from ChromaDB",
116
  examples=[
117
  ["I have leftover rice, what can I make out of it?"],
118
  ["I just have some milk and chocolate, what dessert can I make?"],
119
- ["I am allergic to coconut milk, what can I use instead in a Thai curry?"],
120
  ["Can you suggest a vegan breakfast recipe?"],
121
  ["How do I make a perfect scrambled egg?"],
122
  ["Can you guide me through making a soufflé?"],
 
1
+
2
  import os
3
  from huggingface_hub import login
4
  from datasets import load_dataset
 
8
  import chromadb
9
  from sentence_transformers import SentenceTransformer
10
 
 
 
11
 
12
  # Charger le token depuis les secrets
13
  hf_token = os.getenv("HF_TOKEN") # Assurez-vous que 'HF_TOKEN' est bien le nom du secret Hugging Face
14
 
15
+ # Connecting à Hugging Face
16
  login(hf_token)
17
  # Charger le dataset
18
  dataset = load_dataset("Maryem2025/dataset-train") # Changez le nom si nécessaire
 
53
  texts = [
54
  f"Name: {name}. Ingredients: {ingr}. Instructions: {instr}. Cuisine: {cui}. Total time: {total} minutes."
55
  for name, ingr, instr, cui, total in zip(names, ingredients, instructions, cuisine, total_time)
56
+
 
57
  ]
58
 
59
  # Ajouter les embeddings au store de vecteurs
 
108
  gr.Textbox(lines=2, placeholder="Enter your message here...", label="Message"),
109
  ],
110
  outputs=gr.Textbox(label="Generated Text"),
111
+ title="FALFOUL'S KITCHEN",
112
  description="Running LLM with context retrieval from ChromaDB",
113
  examples=[
114
  ["I have leftover rice, what can I make out of it?"],
115
  ["I just have some milk and chocolate, what dessert can I make?"],
116
+
117
  ["Can you suggest a vegan breakfast recipe?"],
118
  ["How do I make a perfect scrambled egg?"],
119
  ["Can you guide me through making a soufflé?"],