Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
import os
|
3 |
from huggingface_hub import login
|
4 |
from datasets import load_dataset
|
@@ -8,13 +8,11 @@ from huggingface_hub import hf_hub_download
|
|
8 |
import chromadb
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
|
11 |
-
import os
|
12 |
-
from huggingface_hub import login
|
13 |
|
14 |
# Charger le token depuis les secrets
|
15 |
hf_token = os.getenv("HF_TOKEN") # Assurez-vous que 'HF_TOKEN' est bien le nom du secret Hugging Face
|
16 |
|
17 |
-
#
|
18 |
login(hf_token)
|
19 |
# Charger le dataset
|
20 |
dataset = load_dataset("Maryem2025/dataset-train") # Changez le nom si nécessaire
|
@@ -55,8 +53,7 @@ class VectorStore:
|
|
55 |
texts = [
|
56 |
f"Name: {name}. Ingredients: {ingr}. Instructions: {instr}. Cuisine: {cui}. Total time: {total} minutes."
|
57 |
for name, ingr, instr, cui, total in zip(names, ingredients, instructions, cuisine, total_time)
|
58 |
-
|
59 |
-
#for name, ingr, instr in zip(names, ingredients, instructions)
|
60 |
]
|
61 |
|
62 |
# Ajouter les embeddings au store de vecteurs
|
@@ -111,12 +108,12 @@ demo = gr.Interface(
|
|
111 |
gr.Textbox(lines=2, placeholder="Enter your message here...", label="Message"),
|
112 |
],
|
113 |
outputs=gr.Textbox(label="Generated Text"),
|
114 |
-
title="
|
115 |
description="Running LLM with context retrieval from ChromaDB",
|
116 |
examples=[
|
117 |
["I have leftover rice, what can I make out of it?"],
|
118 |
["I just have some milk and chocolate, what dessert can I make?"],
|
119 |
-
|
120 |
["Can you suggest a vegan breakfast recipe?"],
|
121 |
["How do I make a perfect scrambled egg?"],
|
122 |
["Can you guide me through making a soufflé?"],
|
|
|
1 |
+
|
2 |
import os
|
3 |
from huggingface_hub import login
|
4 |
from datasets import load_dataset
|
|
|
8 |
import chromadb
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
|
|
|
|
|
11 |
|
12 |
# Charger le token depuis les secrets
|
13 |
hf_token = os.getenv("HF_TOKEN") # Assurez-vous que 'HF_TOKEN' est bien le nom du secret Hugging Face
|
14 |
|
15 |
+
# Connecting à Hugging Face
|
16 |
login(hf_token)
|
17 |
# Charger le dataset
|
18 |
dataset = load_dataset("Maryem2025/dataset-train") # Changez le nom si nécessaire
|
|
|
53 |
texts = [
|
54 |
f"Name: {name}. Ingredients: {ingr}. Instructions: {instr}. Cuisine: {cui}. Total time: {total} minutes."
|
55 |
for name, ingr, instr, cui, total in zip(names, ingredients, instructions, cuisine, total_time)
|
56 |
+
|
|
|
57 |
]
|
58 |
|
59 |
# Ajouter les embeddings au store de vecteurs
|
|
|
108 |
gr.Textbox(lines=2, placeholder="Enter your message here...", label="Message"),
|
109 |
],
|
110 |
outputs=gr.Textbox(label="Generated Text"),
|
111 |
+
title="FALFOUL'S KITCHEN",
|
112 |
description="Running LLM with context retrieval from ChromaDB",
|
113 |
examples=[
|
114 |
["I have leftover rice, what can I make out of it?"],
|
115 |
["I just have some milk and chocolate, what dessert can I make?"],
|
116 |
+
|
117 |
["Can you suggest a vegan breakfast recipe?"],
|
118 |
["How do I make a perfect scrambled egg?"],
|
119 |
["Can you guide me through making a soufflé?"],
|