Spaces:
Configuration error
Configuration error
Upload 7 files
Browse files- __init__.py +2 -0
- __main__.py +3 -0
- api.py +125 -0
- cli.py +71 -0
- generation.py +820 -0
- model.py +218 -0
- model_fine.py +149 -0
__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .api import generate_audio, text_to_semantic, semantic_to_waveform, save_as_prompt
|
2 |
+
from .generation import SAMPLE_RATE, preload_models
|
__main__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .cli import cli
|
2 |
+
|
3 |
+
cli()
|
api.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Optional, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from .generation import codec_decode, generate_coarse, generate_fine, generate_text_semantic
|
6 |
+
|
7 |
+
|
8 |
+
def text_to_semantic(
|
9 |
+
text: str,
|
10 |
+
history_prompt: Optional[Union[Dict, str]] = None,
|
11 |
+
temp: float = 0.7,
|
12 |
+
silent: bool = False,
|
13 |
+
):
|
14 |
+
"""Generate semantic array from text.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
text: text to be turned into audio
|
18 |
+
history_prompt: history choice for audio cloning
|
19 |
+
temp: generation temperature (1.0 more diverse, 0.0 more conservative)
|
20 |
+
silent: disable progress bar
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
numpy semantic array to be fed into `semantic_to_waveform`
|
24 |
+
"""
|
25 |
+
x_semantic = generate_text_semantic(
|
26 |
+
text,
|
27 |
+
history_prompt=history_prompt,
|
28 |
+
temp=temp,
|
29 |
+
silent=silent,
|
30 |
+
use_kv_caching=True
|
31 |
+
)
|
32 |
+
return x_semantic
|
33 |
+
|
34 |
+
|
35 |
+
def semantic_to_waveform(
|
36 |
+
semantic_tokens: np.ndarray,
|
37 |
+
history_prompt: Optional[Union[Dict, str]] = None,
|
38 |
+
temp: float = 0.7,
|
39 |
+
silent: bool = False,
|
40 |
+
output_full: bool = False,
|
41 |
+
):
|
42 |
+
"""Generate audio array from semantic input.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
semantic_tokens: semantic token output from `text_to_semantic`
|
46 |
+
history_prompt: history choice for audio cloning
|
47 |
+
temp: generation temperature (1.0 more diverse, 0.0 more conservative)
|
48 |
+
silent: disable progress bar
|
49 |
+
output_full: return full generation to be used as a history prompt
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
numpy audio array at sample frequency 24khz
|
53 |
+
"""
|
54 |
+
coarse_tokens = generate_coarse(
|
55 |
+
semantic_tokens,
|
56 |
+
history_prompt=history_prompt,
|
57 |
+
temp=temp,
|
58 |
+
silent=silent,
|
59 |
+
use_kv_caching=True
|
60 |
+
)
|
61 |
+
fine_tokens = generate_fine(
|
62 |
+
coarse_tokens,
|
63 |
+
history_prompt=history_prompt,
|
64 |
+
temp=0.5,
|
65 |
+
)
|
66 |
+
audio_arr = codec_decode(fine_tokens)
|
67 |
+
if output_full:
|
68 |
+
full_generation = {
|
69 |
+
"semantic_prompt": semantic_tokens,
|
70 |
+
"coarse_prompt": coarse_tokens,
|
71 |
+
"fine_prompt": fine_tokens,
|
72 |
+
}
|
73 |
+
return full_generation, audio_arr
|
74 |
+
return audio_arr
|
75 |
+
|
76 |
+
|
77 |
+
def save_as_prompt(filepath, full_generation):
|
78 |
+
assert(filepath.endswith(".npz"))
|
79 |
+
assert(isinstance(full_generation, dict))
|
80 |
+
assert("semantic_prompt" in full_generation)
|
81 |
+
assert("coarse_prompt" in full_generation)
|
82 |
+
assert("fine_prompt" in full_generation)
|
83 |
+
np.savez(filepath, **full_generation)
|
84 |
+
|
85 |
+
|
86 |
+
def generate_audio(
|
87 |
+
text: str,
|
88 |
+
history_prompt: Optional[Union[Dict, str]] = None,
|
89 |
+
text_temp: float = 0.7,
|
90 |
+
waveform_temp: float = 0.7,
|
91 |
+
silent: bool = False,
|
92 |
+
output_full: bool = False,
|
93 |
+
):
|
94 |
+
"""Generate audio array from input text.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
text: text to be turned into audio
|
98 |
+
history_prompt: history choice for audio cloning
|
99 |
+
text_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
|
100 |
+
waveform_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
|
101 |
+
silent: disable progress bar
|
102 |
+
output_full: return full generation to be used as a history prompt
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
numpy audio array at sample frequency 24khz
|
106 |
+
"""
|
107 |
+
semantic_tokens = text_to_semantic(
|
108 |
+
text,
|
109 |
+
history_prompt=history_prompt,
|
110 |
+
temp=text_temp,
|
111 |
+
silent=silent,
|
112 |
+
)
|
113 |
+
out = semantic_to_waveform(
|
114 |
+
semantic_tokens,
|
115 |
+
history_prompt=history_prompt,
|
116 |
+
temp=waveform_temp,
|
117 |
+
silent=silent,
|
118 |
+
output_full=output_full,
|
119 |
+
)
|
120 |
+
if output_full:
|
121 |
+
full_generation, audio_arr = out
|
122 |
+
return full_generation, audio_arr
|
123 |
+
else:
|
124 |
+
audio_arr = out
|
125 |
+
return audio_arr
|
cli.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from typing import Dict, Optional, Union
|
3 |
+
import os
|
4 |
+
|
5 |
+
from scipy.io.wavfile import write as write_wav
|
6 |
+
from .api import generate_audio
|
7 |
+
from .generation import SAMPLE_RATE
|
8 |
+
|
9 |
+
|
10 |
+
def cli():
|
11 |
+
"""Commandline interface."""
|
12 |
+
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
13 |
+
parser.add_argument("--text", type=str, help="text to be turned into audio")
|
14 |
+
parser.add_argument(
|
15 |
+
"--output_filename",
|
16 |
+
type=str,
|
17 |
+
default="bark_generation.wav",
|
18 |
+
help="output audio file name",
|
19 |
+
)
|
20 |
+
parser.add_argument("--output_dir", type=str, default=".", help="directory to save the outputs")
|
21 |
+
parser.add_argument(
|
22 |
+
"--history_prompt",
|
23 |
+
type=str,
|
24 |
+
default=None,
|
25 |
+
help="history choice for audio cloning, be path to the .npz file.",
|
26 |
+
)
|
27 |
+
parser.add_argument(
|
28 |
+
"--text_temp",
|
29 |
+
default=0.7,
|
30 |
+
type=float,
|
31 |
+
help="generation temperature (1.0 more diverse, 0.0 more conservative)",
|
32 |
+
)
|
33 |
+
parser.add_argument(
|
34 |
+
"--waveform_temp",
|
35 |
+
default=0.7,
|
36 |
+
type=float,
|
37 |
+
help="generation temperature (1.0 more diverse, 0.0 more conservative)",
|
38 |
+
)
|
39 |
+
parser.add_argument("--silent", default=False, type=bool, help="disable progress bar")
|
40 |
+
parser.add_argument(
|
41 |
+
"--output_full",
|
42 |
+
default=False,
|
43 |
+
type=bool,
|
44 |
+
help="return full generation to be used as a history prompt",
|
45 |
+
)
|
46 |
+
|
47 |
+
args = vars(parser.parse_args())
|
48 |
+
input_text: str = args.get("text")
|
49 |
+
output_filename: str = args.get("output_filename")
|
50 |
+
output_dir: str = args.get("output_dir")
|
51 |
+
history_prompt: str = args.get("history_prompt")
|
52 |
+
text_temp: float = args.get("text_temp")
|
53 |
+
waveform_temp: float = args.get("waveform_temp")
|
54 |
+
silent: bool = args.get("silent")
|
55 |
+
output_full: bool = args.get("output_full")
|
56 |
+
|
57 |
+
try:
|
58 |
+
os.makedirs(output_dir, exist_ok=True)
|
59 |
+
generated_audio = generate_audio(
|
60 |
+
input_text,
|
61 |
+
history_prompt=history_prompt,
|
62 |
+
text_temp=text_temp,
|
63 |
+
waveform_temp=waveform_temp,
|
64 |
+
silent=silent,
|
65 |
+
output_full=output_full,
|
66 |
+
)
|
67 |
+
output_file_path = os.path.join(output_dir, output_filename)
|
68 |
+
write_wav(output_file_path, SAMPLE_RATE, generated_audio)
|
69 |
+
print(f"Done! Output audio file is saved at: '{output_file_path}'")
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Oops, an error occurred: {e}")
|
generation.py
ADDED
@@ -0,0 +1,820 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import gc
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
|
6 |
+
from encodec import EncodecModel
|
7 |
+
import funcy
|
8 |
+
import logging
|
9 |
+
import numpy as np
|
10 |
+
from scipy.special import softmax
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import tqdm
|
14 |
+
from transformers import BertTokenizer
|
15 |
+
from huggingface_hub import hf_hub_download
|
16 |
+
|
17 |
+
from .model import GPTConfig, GPT
|
18 |
+
from .model_fine import FineGPT, FineGPTConfig
|
19 |
+
|
20 |
+
if (
|
21 |
+
torch.cuda.is_available() and
|
22 |
+
hasattr(torch.cuda, "amp") and
|
23 |
+
hasattr(torch.cuda.amp, "autocast") and
|
24 |
+
hasattr(torch.cuda, "is_bf16_supported") and
|
25 |
+
torch.cuda.is_bf16_supported()
|
26 |
+
):
|
27 |
+
autocast = funcy.partial(torch.cuda.amp.autocast, dtype=torch.bfloat16)
|
28 |
+
else:
|
29 |
+
@contextlib.contextmanager
|
30 |
+
def autocast():
|
31 |
+
yield
|
32 |
+
|
33 |
+
|
34 |
+
# hold models in global scope to lazy load
|
35 |
+
global models
|
36 |
+
models = {}
|
37 |
+
|
38 |
+
global models_devices
|
39 |
+
models_devices = {}
|
40 |
+
|
41 |
+
|
42 |
+
CONTEXT_WINDOW_SIZE = 1024
|
43 |
+
|
44 |
+
SEMANTIC_RATE_HZ = 49.9
|
45 |
+
SEMANTIC_VOCAB_SIZE = 10_000
|
46 |
+
|
47 |
+
CODEBOOK_SIZE = 1024
|
48 |
+
N_COARSE_CODEBOOKS = 2
|
49 |
+
N_FINE_CODEBOOKS = 8
|
50 |
+
COARSE_RATE_HZ = 75
|
51 |
+
|
52 |
+
SAMPLE_RATE = 24_000
|
53 |
+
|
54 |
+
|
55 |
+
SUPPORTED_LANGS = [
|
56 |
+
("English", "en"),
|
57 |
+
("German", "de"),
|
58 |
+
("Spanish", "es"),
|
59 |
+
("French", "fr"),
|
60 |
+
("Hindi", "hi"),
|
61 |
+
("Italian", "it"),
|
62 |
+
("Japanese", "ja"),
|
63 |
+
("Korean", "ko"),
|
64 |
+
("Polish", "pl"),
|
65 |
+
("Portuguese", "pt"),
|
66 |
+
("Russian", "ru"),
|
67 |
+
("Turkish", "tr"),
|
68 |
+
("Chinese", "zh"),
|
69 |
+
]
|
70 |
+
|
71 |
+
ALLOWED_PROMPTS = {"announcer"}
|
72 |
+
for _, lang in SUPPORTED_LANGS:
|
73 |
+
for prefix in ("", f"v2{os.path.sep}"):
|
74 |
+
for n in range(10):
|
75 |
+
ALLOWED_PROMPTS.add(f"{prefix}{lang}_speaker_{n}")
|
76 |
+
|
77 |
+
|
78 |
+
logger = logging.getLogger(__name__)
|
79 |
+
|
80 |
+
|
81 |
+
CUR_PATH = os.path.dirname(os.path.abspath(__file__))
|
82 |
+
|
83 |
+
|
84 |
+
default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache")
|
85 |
+
CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0")
|
86 |
+
|
87 |
+
|
88 |
+
def _cast_bool_env_var(s):
|
89 |
+
return s.lower() in ('true', '1', 't')
|
90 |
+
|
91 |
+
|
92 |
+
USE_SMALL_MODELS = _cast_bool_env_var(os.environ.get("SUNO_USE_SMALL_MODELS", "False"))
|
93 |
+
GLOBAL_ENABLE_MPS = _cast_bool_env_var(os.environ.get("SUNO_ENABLE_MPS", "False"))
|
94 |
+
OFFLOAD_CPU = _cast_bool_env_var(os.environ.get("SUNO_OFFLOAD_CPU", "False"))
|
95 |
+
|
96 |
+
|
97 |
+
REMOTE_MODEL_PATHS = {
|
98 |
+
"text_small": {
|
99 |
+
"repo_id": "suno/bark",
|
100 |
+
"file_name": "text.pt",
|
101 |
+
},
|
102 |
+
"coarse_small": {
|
103 |
+
"repo_id": "suno/bark",
|
104 |
+
"file_name": "coarse.pt",
|
105 |
+
},
|
106 |
+
"fine_small": {
|
107 |
+
"repo_id": "suno/bark",
|
108 |
+
"file_name": "fine.pt",
|
109 |
+
},
|
110 |
+
"text": {
|
111 |
+
"repo_id": "suno/bark",
|
112 |
+
"file_name": "text_2.pt",
|
113 |
+
},
|
114 |
+
"coarse": {
|
115 |
+
"repo_id": "suno/bark",
|
116 |
+
"file_name": "coarse_2.pt",
|
117 |
+
},
|
118 |
+
"fine": {
|
119 |
+
"repo_id": "suno/bark",
|
120 |
+
"file_name": "fine_2.pt",
|
121 |
+
},
|
122 |
+
}
|
123 |
+
|
124 |
+
|
125 |
+
if not hasattr(torch.nn.functional, 'scaled_dot_product_attention') and torch.cuda.is_available():
|
126 |
+
logger.warning(
|
127 |
+
"torch version does not support flash attention. You will get faster" +
|
128 |
+
" inference speed by upgrade torch to newest nightly version."
|
129 |
+
)
|
130 |
+
|
131 |
+
|
132 |
+
def _grab_best_device(use_gpu=True):
|
133 |
+
if torch.cuda.device_count() > 0 and use_gpu:
|
134 |
+
device = "cuda"
|
135 |
+
elif torch.backends.mps.is_available() and use_gpu and GLOBAL_ENABLE_MPS:
|
136 |
+
device = "mps"
|
137 |
+
else:
|
138 |
+
device = "cpu"
|
139 |
+
return device
|
140 |
+
|
141 |
+
|
142 |
+
def _get_ckpt_path(model_type, use_small=False):
|
143 |
+
key = model_type
|
144 |
+
if use_small or USE_SMALL_MODELS:
|
145 |
+
key += "_small"
|
146 |
+
return os.path.join(CACHE_DIR, REMOTE_MODEL_PATHS[key]["file_name"])
|
147 |
+
|
148 |
+
|
149 |
+
def _download(from_hf_path, file_name):
|
150 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
151 |
+
hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=CACHE_DIR)
|
152 |
+
|
153 |
+
|
154 |
+
class InferenceContext:
|
155 |
+
def __init__(self, benchmark=False):
|
156 |
+
# we can't expect inputs to be the same length, so disable benchmarking by default
|
157 |
+
self._chosen_cudnn_benchmark = benchmark
|
158 |
+
self._cudnn_benchmark = None
|
159 |
+
|
160 |
+
def __enter__(self):
|
161 |
+
self._cudnn_benchmark = torch.backends.cudnn.benchmark
|
162 |
+
torch.backends.cudnn.benchmark = self._chosen_cudnn_benchmark
|
163 |
+
|
164 |
+
def __exit__(self, exc_type, exc_value, exc_traceback):
|
165 |
+
torch.backends.cudnn.benchmark = self._cudnn_benchmark
|
166 |
+
|
167 |
+
|
168 |
+
if torch.cuda.is_available():
|
169 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
170 |
+
torch.backends.cudnn.allow_tf32 = True
|
171 |
+
|
172 |
+
|
173 |
+
@contextlib.contextmanager
|
174 |
+
def _inference_mode():
|
175 |
+
with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast():
|
176 |
+
yield
|
177 |
+
|
178 |
+
|
179 |
+
def _clear_cuda_cache():
|
180 |
+
if torch.cuda.is_available():
|
181 |
+
torch.cuda.empty_cache()
|
182 |
+
torch.cuda.synchronize()
|
183 |
+
|
184 |
+
|
185 |
+
def clean_models(model_key=None):
|
186 |
+
global models
|
187 |
+
model_keys = [model_key] if model_key is not None else list(models.keys())
|
188 |
+
for k in model_keys:
|
189 |
+
if k in models:
|
190 |
+
del models[k]
|
191 |
+
_clear_cuda_cache()
|
192 |
+
gc.collect()
|
193 |
+
|
194 |
+
|
195 |
+
def _load_model(ckpt_path, device, use_small=False, model_type="text"):
|
196 |
+
if model_type == "text":
|
197 |
+
ConfigClass = GPTConfig
|
198 |
+
ModelClass = GPT
|
199 |
+
elif model_type == "coarse":
|
200 |
+
ConfigClass = GPTConfig
|
201 |
+
ModelClass = GPT
|
202 |
+
elif model_type == "fine":
|
203 |
+
ConfigClass = FineGPTConfig
|
204 |
+
ModelClass = FineGPT
|
205 |
+
else:
|
206 |
+
raise NotImplementedError()
|
207 |
+
model_key = f"{model_type}_small" if use_small or USE_SMALL_MODELS else model_type
|
208 |
+
model_info = REMOTE_MODEL_PATHS[model_key]
|
209 |
+
if not os.path.exists(ckpt_path):
|
210 |
+
logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`.")
|
211 |
+
_download(model_info["repo_id"], model_info["file_name"])
|
212 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
213 |
+
# this is a hack
|
214 |
+
model_args = checkpoint["model_args"]
|
215 |
+
if "input_vocab_size" not in model_args:
|
216 |
+
model_args["input_vocab_size"] = model_args["vocab_size"]
|
217 |
+
model_args["output_vocab_size"] = model_args["vocab_size"]
|
218 |
+
del model_args["vocab_size"]
|
219 |
+
gptconf = ConfigClass(**checkpoint["model_args"])
|
220 |
+
model = ModelClass(gptconf)
|
221 |
+
state_dict = checkpoint["model"]
|
222 |
+
# fixup checkpoint
|
223 |
+
unwanted_prefix = "_orig_mod."
|
224 |
+
for k, v in list(state_dict.items()):
|
225 |
+
if k.startswith(unwanted_prefix):
|
226 |
+
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
|
227 |
+
extra_keys = set(state_dict.keys()) - set(model.state_dict().keys())
|
228 |
+
extra_keys = set([k for k in extra_keys if not k.endswith(".attn.bias")])
|
229 |
+
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
|
230 |
+
missing_keys = set([k for k in missing_keys if not k.endswith(".attn.bias")])
|
231 |
+
if len(extra_keys) != 0:
|
232 |
+
raise ValueError(f"extra keys found: {extra_keys}")
|
233 |
+
if len(missing_keys) != 0:
|
234 |
+
raise ValueError(f"missing keys: {missing_keys}")
|
235 |
+
model.load_state_dict(state_dict, strict=False)
|
236 |
+
n_params = model.get_num_params()
|
237 |
+
val_loss = checkpoint["best_val_loss"].item()
|
238 |
+
logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss")
|
239 |
+
model.eval()
|
240 |
+
model.to(device)
|
241 |
+
del checkpoint, state_dict
|
242 |
+
_clear_cuda_cache()
|
243 |
+
if model_type == "text":
|
244 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased")
|
245 |
+
return {
|
246 |
+
"model": model,
|
247 |
+
"tokenizer": tokenizer,
|
248 |
+
}
|
249 |
+
return model
|
250 |
+
|
251 |
+
|
252 |
+
def _load_codec_model(device):
|
253 |
+
model = EncodecModel.encodec_model_24khz()
|
254 |
+
model.set_target_bandwidth(6.0)
|
255 |
+
model.eval()
|
256 |
+
model.to(device)
|
257 |
+
_clear_cuda_cache()
|
258 |
+
return model
|
259 |
+
|
260 |
+
|
261 |
+
def load_model(use_gpu=True, use_small=False, force_reload=False, model_type="text"):
|
262 |
+
_load_model_f = funcy.partial(_load_model, model_type=model_type, use_small=use_small)
|
263 |
+
if model_type not in ("text", "coarse", "fine"):
|
264 |
+
raise NotImplementedError()
|
265 |
+
global models
|
266 |
+
global models_devices
|
267 |
+
device = _grab_best_device(use_gpu=use_gpu)
|
268 |
+
model_key = f"{model_type}"
|
269 |
+
if OFFLOAD_CPU:
|
270 |
+
models_devices[model_key] = device
|
271 |
+
device = "cpu"
|
272 |
+
if model_key not in models or force_reload:
|
273 |
+
ckpt_path = _get_ckpt_path(model_type, use_small=use_small)
|
274 |
+
clean_models(model_key=model_key)
|
275 |
+
model = _load_model_f(ckpt_path, device)
|
276 |
+
models[model_key] = model
|
277 |
+
if model_type == "text":
|
278 |
+
models[model_key]["model"].to(device)
|
279 |
+
else:
|
280 |
+
models[model_key].to(device)
|
281 |
+
return models[model_key]
|
282 |
+
|
283 |
+
|
284 |
+
def load_codec_model(use_gpu=True, force_reload=False):
|
285 |
+
global models
|
286 |
+
global models_devices
|
287 |
+
device = _grab_best_device(use_gpu=use_gpu)
|
288 |
+
if device == "mps":
|
289 |
+
# encodec doesn't support mps
|
290 |
+
device = "cpu"
|
291 |
+
model_key = "codec"
|
292 |
+
if OFFLOAD_CPU:
|
293 |
+
models_devices[model_key] = device
|
294 |
+
device = "cpu"
|
295 |
+
if model_key not in models or force_reload:
|
296 |
+
clean_models(model_key=model_key)
|
297 |
+
model = _load_codec_model(device)
|
298 |
+
models[model_key] = model
|
299 |
+
models[model_key].to(device)
|
300 |
+
return models[model_key]
|
301 |
+
|
302 |
+
|
303 |
+
def preload_models(
|
304 |
+
text_use_gpu=True,
|
305 |
+
text_use_small=False,
|
306 |
+
coarse_use_gpu=True,
|
307 |
+
coarse_use_small=False,
|
308 |
+
fine_use_gpu=True,
|
309 |
+
fine_use_small=False,
|
310 |
+
codec_use_gpu=True,
|
311 |
+
force_reload=False,
|
312 |
+
):
|
313 |
+
"""Load all the necessary models for the pipeline."""
|
314 |
+
if _grab_best_device() == "cpu" and (
|
315 |
+
text_use_gpu or coarse_use_gpu or fine_use_gpu or codec_use_gpu
|
316 |
+
):
|
317 |
+
logger.warning("No GPU being used. Careful, inference might be very slow!")
|
318 |
+
_ = load_model(
|
319 |
+
model_type="text", use_gpu=text_use_gpu, use_small=text_use_small, force_reload=force_reload
|
320 |
+
)
|
321 |
+
_ = load_model(
|
322 |
+
model_type="coarse",
|
323 |
+
use_gpu=coarse_use_gpu,
|
324 |
+
use_small=coarse_use_small,
|
325 |
+
force_reload=force_reload,
|
326 |
+
)
|
327 |
+
_ = load_model(
|
328 |
+
model_type="fine", use_gpu=fine_use_gpu, use_small=fine_use_small, force_reload=force_reload
|
329 |
+
)
|
330 |
+
_ = load_codec_model(use_gpu=codec_use_gpu, force_reload=force_reload)
|
331 |
+
|
332 |
+
|
333 |
+
####
|
334 |
+
# Generation Functionality
|
335 |
+
####
|
336 |
+
|
337 |
+
|
338 |
+
def _tokenize(tokenizer, text):
|
339 |
+
return tokenizer.encode(text, add_special_tokens=False)
|
340 |
+
|
341 |
+
|
342 |
+
def _detokenize(tokenizer, enc_text):
|
343 |
+
return tokenizer.decode(enc_text)
|
344 |
+
|
345 |
+
|
346 |
+
def _normalize_whitespace(text):
|
347 |
+
return re.sub(r"\s+", " ", text).strip()
|
348 |
+
|
349 |
+
|
350 |
+
TEXT_ENCODING_OFFSET = 10_048
|
351 |
+
SEMANTIC_PAD_TOKEN = 10_000
|
352 |
+
TEXT_PAD_TOKEN = 129_595
|
353 |
+
SEMANTIC_INFER_TOKEN = 129_599
|
354 |
+
|
355 |
+
|
356 |
+
def _load_history_prompt(history_prompt_input):
|
357 |
+
if isinstance(history_prompt_input, str) and history_prompt_input.endswith(".npz"):
|
358 |
+
history_prompt = np.load(history_prompt_input)
|
359 |
+
elif isinstance(history_prompt_input, str):
|
360 |
+
# make sure this works on non-ubuntu
|
361 |
+
history_prompt_input = os.path.join(*history_prompt_input.split("/"))
|
362 |
+
if history_prompt_input not in ALLOWED_PROMPTS:
|
363 |
+
raise ValueError("history prompt not found")
|
364 |
+
history_prompt = np.load(
|
365 |
+
os.path.join(CUR_PATH, "assets", "prompts", f"{history_prompt_input}.npz")
|
366 |
+
)
|
367 |
+
elif isinstance(history_prompt_input, dict):
|
368 |
+
assert("semantic_prompt" in history_prompt_input)
|
369 |
+
assert("coarse_prompt" in history_prompt_input)
|
370 |
+
assert("fine_prompt" in history_prompt_input)
|
371 |
+
history_prompt = history_prompt_input
|
372 |
+
else:
|
373 |
+
raise ValueError("history prompt format unrecognized")
|
374 |
+
return history_prompt
|
375 |
+
|
376 |
+
|
377 |
+
def generate_text_semantic(
|
378 |
+
text,
|
379 |
+
history_prompt=None,
|
380 |
+
temp=0.7,
|
381 |
+
top_k=None,
|
382 |
+
top_p=None,
|
383 |
+
silent=False,
|
384 |
+
min_eos_p=0.2,
|
385 |
+
max_gen_duration_s=None,
|
386 |
+
allow_early_stop=True,
|
387 |
+
use_kv_caching=False,
|
388 |
+
):
|
389 |
+
"""Generate semantic tokens from text."""
|
390 |
+
assert isinstance(text, str)
|
391 |
+
text = _normalize_whitespace(text)
|
392 |
+
assert len(text.strip()) > 0
|
393 |
+
if history_prompt is not None:
|
394 |
+
history_prompt = _load_history_prompt(history_prompt)
|
395 |
+
semantic_history = history_prompt["semantic_prompt"]
|
396 |
+
assert (
|
397 |
+
isinstance(semantic_history, np.ndarray)
|
398 |
+
and len(semantic_history.shape) == 1
|
399 |
+
and len(semantic_history) > 0
|
400 |
+
and semantic_history.min() >= 0
|
401 |
+
and semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1
|
402 |
+
)
|
403 |
+
else:
|
404 |
+
semantic_history = None
|
405 |
+
# load models if not yet exist
|
406 |
+
global models
|
407 |
+
global models_devices
|
408 |
+
if "text" not in models:
|
409 |
+
preload_models()
|
410 |
+
model_container = models["text"]
|
411 |
+
model = model_container["model"]
|
412 |
+
tokenizer = model_container["tokenizer"]
|
413 |
+
encoded_text = np.array(_tokenize(tokenizer, text)) + TEXT_ENCODING_OFFSET
|
414 |
+
if OFFLOAD_CPU:
|
415 |
+
model.to(models_devices["text"])
|
416 |
+
device = next(model.parameters()).device
|
417 |
+
if len(encoded_text) > 256:
|
418 |
+
p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1)
|
419 |
+
logger.warning(f"warning, text too long, lopping of last {p}%")
|
420 |
+
encoded_text = encoded_text[:256]
|
421 |
+
encoded_text = np.pad(
|
422 |
+
encoded_text,
|
423 |
+
(0, 256 - len(encoded_text)),
|
424 |
+
constant_values=TEXT_PAD_TOKEN,
|
425 |
+
mode="constant",
|
426 |
+
)
|
427 |
+
if semantic_history is not None:
|
428 |
+
semantic_history = semantic_history.astype(np.int64)
|
429 |
+
# lop off if history is too long, pad if needed
|
430 |
+
semantic_history = semantic_history[-256:]
|
431 |
+
semantic_history = np.pad(
|
432 |
+
semantic_history,
|
433 |
+
(0, 256 - len(semantic_history)),
|
434 |
+
constant_values=SEMANTIC_PAD_TOKEN,
|
435 |
+
mode="constant",
|
436 |
+
)
|
437 |
+
else:
|
438 |
+
semantic_history = np.array([SEMANTIC_PAD_TOKEN] * 256)
|
439 |
+
x = torch.from_numpy(
|
440 |
+
np.hstack([
|
441 |
+
encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN])
|
442 |
+
]).astype(np.int64)
|
443 |
+
)[None]
|
444 |
+
assert x.shape[1] == 256 + 256 + 1
|
445 |
+
with _inference_mode():
|
446 |
+
x = x.to(device)
|
447 |
+
n_tot_steps = 768
|
448 |
+
# custom tqdm updates since we don't know when eos will occur
|
449 |
+
pbar = tqdm.tqdm(disable=silent, total=n_tot_steps)
|
450 |
+
pbar_state = 0
|
451 |
+
tot_generated_duration_s = 0
|
452 |
+
kv_cache = None
|
453 |
+
for n in range(n_tot_steps):
|
454 |
+
if use_kv_caching and kv_cache is not None:
|
455 |
+
x_input = x[:, [-1]]
|
456 |
+
else:
|
457 |
+
x_input = x
|
458 |
+
logits, kv_cache = model(
|
459 |
+
x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache
|
460 |
+
)
|
461 |
+
relevant_logits = logits[0, 0, :SEMANTIC_VOCAB_SIZE]
|
462 |
+
if allow_early_stop:
|
463 |
+
relevant_logits = torch.hstack(
|
464 |
+
(relevant_logits, logits[0, 0, [SEMANTIC_PAD_TOKEN]]) # eos
|
465 |
+
)
|
466 |
+
if top_p is not None:
|
467 |
+
# faster to convert to numpy
|
468 |
+
original_device = relevant_logits.device
|
469 |
+
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
|
470 |
+
sorted_indices = np.argsort(relevant_logits)[::-1]
|
471 |
+
sorted_logits = relevant_logits[sorted_indices]
|
472 |
+
cumulative_probs = np.cumsum(softmax(sorted_logits))
|
473 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
474 |
+
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
|
475 |
+
sorted_indices_to_remove[0] = False
|
476 |
+
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
|
477 |
+
relevant_logits = torch.from_numpy(relevant_logits)
|
478 |
+
relevant_logits = relevant_logits.to(original_device)
|
479 |
+
if top_k is not None:
|
480 |
+
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
|
481 |
+
relevant_logits[relevant_logits < v[-1]] = -float("Inf")
|
482 |
+
probs = F.softmax(relevant_logits / temp, dim=-1)
|
483 |
+
item_next = torch.multinomial(probs, num_samples=1).to(torch.int32)
|
484 |
+
if allow_early_stop and (
|
485 |
+
item_next == SEMANTIC_VOCAB_SIZE
|
486 |
+
or (min_eos_p is not None and probs[-1] >= min_eos_p)
|
487 |
+
):
|
488 |
+
# eos found, so break
|
489 |
+
pbar.update(n - pbar_state)
|
490 |
+
break
|
491 |
+
x = torch.cat((x, item_next[None]), dim=1)
|
492 |
+
tot_generated_duration_s += 1 / SEMANTIC_RATE_HZ
|
493 |
+
if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s:
|
494 |
+
pbar.update(n - pbar_state)
|
495 |
+
break
|
496 |
+
if n == n_tot_steps - 1:
|
497 |
+
pbar.update(n - pbar_state)
|
498 |
+
break
|
499 |
+
del logits, relevant_logits, probs, item_next
|
500 |
+
|
501 |
+
if n > pbar_state:
|
502 |
+
if n > pbar.total:
|
503 |
+
pbar.total = n
|
504 |
+
pbar.update(n - pbar_state)
|
505 |
+
pbar_state = n
|
506 |
+
pbar.total = n
|
507 |
+
pbar.refresh()
|
508 |
+
pbar.close()
|
509 |
+
out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1 :]
|
510 |
+
if OFFLOAD_CPU:
|
511 |
+
model.to("cpu")
|
512 |
+
assert all(0 <= out) and all(out < SEMANTIC_VOCAB_SIZE)
|
513 |
+
_clear_cuda_cache()
|
514 |
+
return out
|
515 |
+
|
516 |
+
|
517 |
+
def _flatten_codebooks(arr, offset_size=CODEBOOK_SIZE):
|
518 |
+
assert len(arr.shape) == 2
|
519 |
+
arr = arr.copy()
|
520 |
+
if offset_size is not None:
|
521 |
+
for n in range(1, arr.shape[0]):
|
522 |
+
arr[n, :] += offset_size * n
|
523 |
+
flat_arr = arr.ravel("F")
|
524 |
+
return flat_arr
|
525 |
+
|
526 |
+
|
527 |
+
COARSE_SEMANTIC_PAD_TOKEN = 12_048
|
528 |
+
COARSE_INFER_TOKEN = 12_050
|
529 |
+
|
530 |
+
|
531 |
+
def generate_coarse(
|
532 |
+
x_semantic,
|
533 |
+
history_prompt=None,
|
534 |
+
temp=0.7,
|
535 |
+
top_k=None,
|
536 |
+
top_p=None,
|
537 |
+
silent=False,
|
538 |
+
max_coarse_history=630, # min 60 (faster), max 630 (more context)
|
539 |
+
sliding_window_len=60,
|
540 |
+
use_kv_caching=False,
|
541 |
+
):
|
542 |
+
"""Generate coarse audio codes from semantic tokens."""
|
543 |
+
assert (
|
544 |
+
isinstance(x_semantic, np.ndarray)
|
545 |
+
and len(x_semantic.shape) == 1
|
546 |
+
and len(x_semantic) > 0
|
547 |
+
and x_semantic.min() >= 0
|
548 |
+
and x_semantic.max() <= SEMANTIC_VOCAB_SIZE - 1
|
549 |
+
)
|
550 |
+
assert 60 <= max_coarse_history <= 630
|
551 |
+
assert max_coarse_history + sliding_window_len <= 1024 - 256
|
552 |
+
semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ * N_COARSE_CODEBOOKS
|
553 |
+
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
|
554 |
+
if history_prompt is not None:
|
555 |
+
history_prompt = _load_history_prompt(history_prompt)
|
556 |
+
x_semantic_history = history_prompt["semantic_prompt"]
|
557 |
+
x_coarse_history = history_prompt["coarse_prompt"]
|
558 |
+
assert (
|
559 |
+
isinstance(x_semantic_history, np.ndarray)
|
560 |
+
and len(x_semantic_history.shape) == 1
|
561 |
+
and len(x_semantic_history) > 0
|
562 |
+
and x_semantic_history.min() >= 0
|
563 |
+
and x_semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1
|
564 |
+
and isinstance(x_coarse_history, np.ndarray)
|
565 |
+
and len(x_coarse_history.shape) == 2
|
566 |
+
and x_coarse_history.shape[0] == N_COARSE_CODEBOOKS
|
567 |
+
and x_coarse_history.shape[-1] >= 0
|
568 |
+
and x_coarse_history.min() >= 0
|
569 |
+
and x_coarse_history.max() <= CODEBOOK_SIZE - 1
|
570 |
+
and (
|
571 |
+
round(x_coarse_history.shape[-1] / len(x_semantic_history), 1)
|
572 |
+
== round(semantic_to_coarse_ratio / N_COARSE_CODEBOOKS, 1)
|
573 |
+
)
|
574 |
+
)
|
575 |
+
x_coarse_history = _flatten_codebooks(x_coarse_history) + SEMANTIC_VOCAB_SIZE
|
576 |
+
# trim histories correctly
|
577 |
+
n_semantic_hist_provided = np.min(
|
578 |
+
[
|
579 |
+
max_semantic_history,
|
580 |
+
len(x_semantic_history) - len(x_semantic_history) % 2,
|
581 |
+
int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)),
|
582 |
+
]
|
583 |
+
)
|
584 |
+
n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio))
|
585 |
+
x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32)
|
586 |
+
x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32)
|
587 |
+
# TODO: bit of a hack for time alignment (sounds better)
|
588 |
+
x_coarse_history = x_coarse_history[:-2]
|
589 |
+
else:
|
590 |
+
x_semantic_history = np.array([], dtype=np.int32)
|
591 |
+
x_coarse_history = np.array([], dtype=np.int32)
|
592 |
+
# load models if not yet exist
|
593 |
+
global models
|
594 |
+
global models_devices
|
595 |
+
if "coarse" not in models:
|
596 |
+
preload_models()
|
597 |
+
model = models["coarse"]
|
598 |
+
if OFFLOAD_CPU:
|
599 |
+
model.to(models_devices["coarse"])
|
600 |
+
device = next(model.parameters()).device
|
601 |
+
# start loop
|
602 |
+
n_steps = int(
|
603 |
+
round(
|
604 |
+
np.floor(len(x_semantic) * semantic_to_coarse_ratio / N_COARSE_CODEBOOKS)
|
605 |
+
* N_COARSE_CODEBOOKS
|
606 |
+
)
|
607 |
+
)
|
608 |
+
assert n_steps > 0 and n_steps % N_COARSE_CODEBOOKS == 0
|
609 |
+
x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32)
|
610 |
+
x_coarse = x_coarse_history.astype(np.int32)
|
611 |
+
base_semantic_idx = len(x_semantic_history)
|
612 |
+
with _inference_mode():
|
613 |
+
x_semantic_in = torch.from_numpy(x_semantic)[None].to(device)
|
614 |
+
x_coarse_in = torch.from_numpy(x_coarse)[None].to(device)
|
615 |
+
n_window_steps = int(np.ceil(n_steps / sliding_window_len))
|
616 |
+
n_step = 0
|
617 |
+
for _ in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent):
|
618 |
+
semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio))
|
619 |
+
# pad from right side
|
620 |
+
x_in = x_semantic_in[:, np.max([0, semantic_idx - max_semantic_history]) :]
|
621 |
+
x_in = x_in[:, :256]
|
622 |
+
x_in = F.pad(
|
623 |
+
x_in,
|
624 |
+
(0, 256 - x_in.shape[-1]),
|
625 |
+
"constant",
|
626 |
+
COARSE_SEMANTIC_PAD_TOKEN,
|
627 |
+
)
|
628 |
+
x_in = torch.hstack(
|
629 |
+
[
|
630 |
+
x_in,
|
631 |
+
torch.tensor([COARSE_INFER_TOKEN])[None].to(device),
|
632 |
+
x_coarse_in[:, -max_coarse_history:],
|
633 |
+
]
|
634 |
+
)
|
635 |
+
kv_cache = None
|
636 |
+
for _ in range(sliding_window_len):
|
637 |
+
if n_step >= n_steps:
|
638 |
+
continue
|
639 |
+
is_major_step = n_step % N_COARSE_CODEBOOKS == 0
|
640 |
+
|
641 |
+
if use_kv_caching and kv_cache is not None:
|
642 |
+
x_input = x_in[:, [-1]]
|
643 |
+
else:
|
644 |
+
x_input = x_in
|
645 |
+
|
646 |
+
logits, kv_cache = model(x_input, use_cache=use_kv_caching, past_kv=kv_cache)
|
647 |
+
logit_start_idx = (
|
648 |
+
SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * CODEBOOK_SIZE
|
649 |
+
)
|
650 |
+
logit_end_idx = (
|
651 |
+
SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * CODEBOOK_SIZE
|
652 |
+
)
|
653 |
+
relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx]
|
654 |
+
if top_p is not None:
|
655 |
+
# faster to convert to numpy
|
656 |
+
original_device = relevant_logits.device
|
657 |
+
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
|
658 |
+
sorted_indices = np.argsort(relevant_logits)[::-1]
|
659 |
+
sorted_logits = relevant_logits[sorted_indices]
|
660 |
+
cumulative_probs = np.cumsum(softmax(sorted_logits))
|
661 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
662 |
+
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
|
663 |
+
sorted_indices_to_remove[0] = False
|
664 |
+
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
|
665 |
+
relevant_logits = torch.from_numpy(relevant_logits)
|
666 |
+
relevant_logits = relevant_logits.to(original_device)
|
667 |
+
if top_k is not None:
|
668 |
+
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
|
669 |
+
relevant_logits[relevant_logits < v[-1]] = -float("Inf")
|
670 |
+
probs = F.softmax(relevant_logits / temp, dim=-1)
|
671 |
+
item_next = torch.multinomial(probs, num_samples=1).to(torch.int32)
|
672 |
+
item_next += logit_start_idx
|
673 |
+
x_coarse_in = torch.cat((x_coarse_in, item_next[None]), dim=1)
|
674 |
+
x_in = torch.cat((x_in, item_next[None]), dim=1)
|
675 |
+
del logits, relevant_logits, probs, item_next
|
676 |
+
n_step += 1
|
677 |
+
del x_in
|
678 |
+
del x_semantic_in
|
679 |
+
if OFFLOAD_CPU:
|
680 |
+
model.to("cpu")
|
681 |
+
gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history) :]
|
682 |
+
del x_coarse_in
|
683 |
+
assert len(gen_coarse_arr) == n_steps
|
684 |
+
gen_coarse_audio_arr = gen_coarse_arr.reshape(-1, N_COARSE_CODEBOOKS).T - SEMANTIC_VOCAB_SIZE
|
685 |
+
for n in range(1, N_COARSE_CODEBOOKS):
|
686 |
+
gen_coarse_audio_arr[n, :] -= n * CODEBOOK_SIZE
|
687 |
+
_clear_cuda_cache()
|
688 |
+
return gen_coarse_audio_arr
|
689 |
+
|
690 |
+
|
691 |
+
def generate_fine(
|
692 |
+
x_coarse_gen,
|
693 |
+
history_prompt=None,
|
694 |
+
temp=0.5,
|
695 |
+
silent=True,
|
696 |
+
):
|
697 |
+
"""Generate full audio codes from coarse audio codes."""
|
698 |
+
assert (
|
699 |
+
isinstance(x_coarse_gen, np.ndarray)
|
700 |
+
and len(x_coarse_gen.shape) == 2
|
701 |
+
and 1 <= x_coarse_gen.shape[0] <= N_FINE_CODEBOOKS - 1
|
702 |
+
and x_coarse_gen.shape[1] > 0
|
703 |
+
and x_coarse_gen.min() >= 0
|
704 |
+
and x_coarse_gen.max() <= CODEBOOK_SIZE - 1
|
705 |
+
)
|
706 |
+
if history_prompt is not None:
|
707 |
+
history_prompt = _load_history_prompt(history_prompt)
|
708 |
+
x_fine_history = history_prompt["fine_prompt"]
|
709 |
+
assert (
|
710 |
+
isinstance(x_fine_history, np.ndarray)
|
711 |
+
and len(x_fine_history.shape) == 2
|
712 |
+
and x_fine_history.shape[0] == N_FINE_CODEBOOKS
|
713 |
+
and x_fine_history.shape[1] >= 0
|
714 |
+
and x_fine_history.min() >= 0
|
715 |
+
and x_fine_history.max() <= CODEBOOK_SIZE - 1
|
716 |
+
)
|
717 |
+
else:
|
718 |
+
x_fine_history = None
|
719 |
+
n_coarse = x_coarse_gen.shape[0]
|
720 |
+
# load models if not yet exist
|
721 |
+
global models
|
722 |
+
global models_devices
|
723 |
+
if "fine" not in models:
|
724 |
+
preload_models()
|
725 |
+
model = models["fine"]
|
726 |
+
if OFFLOAD_CPU:
|
727 |
+
model.to(models_devices["fine"])
|
728 |
+
device = next(model.parameters()).device
|
729 |
+
# make input arr
|
730 |
+
in_arr = np.vstack(
|
731 |
+
[
|
732 |
+
x_coarse_gen,
|
733 |
+
np.zeros((N_FINE_CODEBOOKS - n_coarse, x_coarse_gen.shape[1]))
|
734 |
+
+ CODEBOOK_SIZE, # padding
|
735 |
+
]
|
736 |
+
).astype(np.int32)
|
737 |
+
# prepend history if available (max 512)
|
738 |
+
if x_fine_history is not None:
|
739 |
+
x_fine_history = x_fine_history.astype(np.int32)
|
740 |
+
in_arr = np.hstack(
|
741 |
+
[
|
742 |
+
x_fine_history[:, -512:].astype(np.int32),
|
743 |
+
in_arr,
|
744 |
+
]
|
745 |
+
)
|
746 |
+
n_history = x_fine_history[:, -512:].shape[1]
|
747 |
+
else:
|
748 |
+
n_history = 0
|
749 |
+
n_remove_from_end = 0
|
750 |
+
# need to pad if too short (since non-causal model)
|
751 |
+
if in_arr.shape[1] < 1024:
|
752 |
+
n_remove_from_end = 1024 - in_arr.shape[1]
|
753 |
+
in_arr = np.hstack(
|
754 |
+
[
|
755 |
+
in_arr,
|
756 |
+
np.zeros((N_FINE_CODEBOOKS, n_remove_from_end), dtype=np.int32) + CODEBOOK_SIZE,
|
757 |
+
]
|
758 |
+
)
|
759 |
+
# we can be lazy about fractional loop and just keep overwriting codebooks
|
760 |
+
n_loops = np.max([0, int(np.ceil((x_coarse_gen.shape[1] - (1024 - n_history)) / 512))]) + 1
|
761 |
+
with _inference_mode():
|
762 |
+
in_arr = torch.tensor(in_arr.T).to(device)
|
763 |
+
for n in tqdm.tqdm(range(n_loops), disable=silent):
|
764 |
+
start_idx = np.min([n * 512, in_arr.shape[0] - 1024])
|
765 |
+
start_fill_idx = np.min([n_history + n * 512, in_arr.shape[0] - 512])
|
766 |
+
rel_start_fill_idx = start_fill_idx - start_idx
|
767 |
+
in_buffer = in_arr[start_idx : start_idx + 1024, :][None]
|
768 |
+
for nn in range(n_coarse, N_FINE_CODEBOOKS):
|
769 |
+
logits = model(nn, in_buffer)
|
770 |
+
if temp is None:
|
771 |
+
relevant_logits = logits[0, rel_start_fill_idx:, :CODEBOOK_SIZE]
|
772 |
+
codebook_preds = torch.argmax(relevant_logits, -1)
|
773 |
+
else:
|
774 |
+
relevant_logits = logits[0, :, :CODEBOOK_SIZE] / temp
|
775 |
+
probs = F.softmax(relevant_logits, dim=-1)
|
776 |
+
codebook_preds = torch.multinomial(
|
777 |
+
probs[rel_start_fill_idx:1024], num_samples=1
|
778 |
+
).reshape(-1)
|
779 |
+
codebook_preds = codebook_preds.to(torch.int32)
|
780 |
+
in_buffer[0, rel_start_fill_idx:, nn] = codebook_preds
|
781 |
+
del logits, codebook_preds
|
782 |
+
# transfer over info into model_in and convert to numpy
|
783 |
+
for nn in range(n_coarse, N_FINE_CODEBOOKS):
|
784 |
+
in_arr[
|
785 |
+
start_fill_idx : start_fill_idx + (1024 - rel_start_fill_idx), nn
|
786 |
+
] = in_buffer[0, rel_start_fill_idx:, nn]
|
787 |
+
del in_buffer
|
788 |
+
gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T
|
789 |
+
del in_arr
|
790 |
+
if OFFLOAD_CPU:
|
791 |
+
model.to("cpu")
|
792 |
+
gen_fine_arr = gen_fine_arr[:, n_history:]
|
793 |
+
if n_remove_from_end > 0:
|
794 |
+
gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end]
|
795 |
+
assert gen_fine_arr.shape[-1] == x_coarse_gen.shape[-1]
|
796 |
+
_clear_cuda_cache()
|
797 |
+
return gen_fine_arr
|
798 |
+
|
799 |
+
|
800 |
+
def codec_decode(fine_tokens):
|
801 |
+
"""Turn quantized audio codes into audio array using encodec."""
|
802 |
+
# load models if not yet exist
|
803 |
+
global models
|
804 |
+
global models_devices
|
805 |
+
if "codec" not in models:
|
806 |
+
preload_models()
|
807 |
+
model = models["codec"]
|
808 |
+
if OFFLOAD_CPU:
|
809 |
+
model.to(models_devices["codec"])
|
810 |
+
device = next(model.parameters()).device
|
811 |
+
arr = torch.from_numpy(fine_tokens)[None]
|
812 |
+
arr = arr.to(device)
|
813 |
+
arr = arr.transpose(0, 1)
|
814 |
+
emb = model.quantizer.decode(arr)
|
815 |
+
out = model.decoder(emb)
|
816 |
+
audio_arr = out.detach().cpu().numpy().squeeze()
|
817 |
+
del arr, emb, out
|
818 |
+
if OFFLOAD_CPU:
|
819 |
+
model.to("cpu")
|
820 |
+
return audio_arr
|
model.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Much of this code is adapted from Andrej Karpathy's NanoGPT
|
3 |
+
(https://github.com/karpathy/nanoGPT)
|
4 |
+
"""
|
5 |
+
import math
|
6 |
+
from dataclasses import dataclass
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
|
12 |
+
class LayerNorm(nn.Module):
|
13 |
+
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
|
14 |
+
|
15 |
+
def __init__(self, ndim, bias):
|
16 |
+
super().__init__()
|
17 |
+
self.weight = nn.Parameter(torch.ones(ndim))
|
18 |
+
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
|
19 |
+
|
20 |
+
def forward(self, input):
|
21 |
+
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
|
22 |
+
|
23 |
+
class CausalSelfAttention(nn.Module):
|
24 |
+
|
25 |
+
def __init__(self, config):
|
26 |
+
super().__init__()
|
27 |
+
assert config.n_embd % config.n_head == 0
|
28 |
+
# key, query, value projections for all heads, but in a batch
|
29 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
30 |
+
# output projection
|
31 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
32 |
+
# regularization
|
33 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
34 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
35 |
+
self.n_head = config.n_head
|
36 |
+
self.n_embd = config.n_embd
|
37 |
+
self.dropout = config.dropout
|
38 |
+
# flash attention make GPU go brrrrr but support is only in PyTorch nightly and still a bit scary
|
39 |
+
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
40 |
+
if not self.flash:
|
41 |
+
# print("WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0")
|
42 |
+
# causal mask to ensure that attention is only applied to the left in the input sequence
|
43 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
44 |
+
.view(1, 1, config.block_size, config.block_size))
|
45 |
+
|
46 |
+
def forward(self, x, past_kv=None, use_cache=False):
|
47 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
48 |
+
|
49 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
50 |
+
q, k ,v = self.c_attn(x).split(self.n_embd, dim=2)
|
51 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
52 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
53 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
54 |
+
|
55 |
+
if past_kv is not None:
|
56 |
+
past_key = past_kv[0]
|
57 |
+
past_value = past_kv[1]
|
58 |
+
k = torch.cat((past_key, k), dim=-2)
|
59 |
+
v = torch.cat((past_value, v), dim=-2)
|
60 |
+
|
61 |
+
FULL_T = k.shape[-2]
|
62 |
+
|
63 |
+
if use_cache is True:
|
64 |
+
present = (k, v)
|
65 |
+
else:
|
66 |
+
present = None
|
67 |
+
|
68 |
+
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
69 |
+
if self.flash:
|
70 |
+
# efficient attention using Flash Attention CUDA kernels
|
71 |
+
if past_kv is not None:
|
72 |
+
# When `past_kv` is provided, we're doing incremental decoding and `q.shape[2] == 1`: q only contains
|
73 |
+
# the query for the last token. scaled_dot_product_attention interprets this as the first token in the
|
74 |
+
# sequence, so if is_causal=True it will mask out all attention from it. This is not what we want, so
|
75 |
+
# to work around this we set is_causal=False.
|
76 |
+
is_causal = False
|
77 |
+
else:
|
78 |
+
is_causal = True
|
79 |
+
|
80 |
+
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=self.dropout, is_causal=is_causal)
|
81 |
+
else:
|
82 |
+
# manual implementation of attention
|
83 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
84 |
+
att = att.masked_fill(self.bias[:,:,FULL_T-T:FULL_T,:FULL_T] == 0, float('-inf'))
|
85 |
+
att = F.softmax(att, dim=-1)
|
86 |
+
att = self.attn_dropout(att)
|
87 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
88 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
89 |
+
|
90 |
+
# output projection
|
91 |
+
y = self.resid_dropout(self.c_proj(y))
|
92 |
+
return (y, present)
|
93 |
+
|
94 |
+
class MLP(nn.Module):
|
95 |
+
|
96 |
+
def __init__(self, config):
|
97 |
+
super().__init__()
|
98 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
99 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
100 |
+
self.dropout = nn.Dropout(config.dropout)
|
101 |
+
self.gelu = nn.GELU()
|
102 |
+
|
103 |
+
def forward(self, x):
|
104 |
+
x = self.c_fc(x)
|
105 |
+
x = self.gelu(x)
|
106 |
+
x = self.c_proj(x)
|
107 |
+
x = self.dropout(x)
|
108 |
+
return x
|
109 |
+
|
110 |
+
class Block(nn.Module):
|
111 |
+
|
112 |
+
def __init__(self, config, layer_idx):
|
113 |
+
super().__init__()
|
114 |
+
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
|
115 |
+
self.attn = CausalSelfAttention(config)
|
116 |
+
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
|
117 |
+
self.mlp = MLP(config)
|
118 |
+
self.layer_idx = layer_idx
|
119 |
+
|
120 |
+
def forward(self, x, past_kv=None, use_cache=False):
|
121 |
+
attn_output, prev_kvs = self.attn(self.ln_1(x), past_kv=past_kv, use_cache=use_cache)
|
122 |
+
x = x + attn_output
|
123 |
+
x = x + self.mlp(self.ln_2(x))
|
124 |
+
return (x, prev_kvs)
|
125 |
+
|
126 |
+
@dataclass
|
127 |
+
class GPTConfig:
|
128 |
+
block_size: int = 1024
|
129 |
+
input_vocab_size: int = 10_048
|
130 |
+
output_vocab_size: int = 10_048
|
131 |
+
n_layer: int = 12
|
132 |
+
n_head: int = 12
|
133 |
+
n_embd: int = 768
|
134 |
+
dropout: float = 0.0
|
135 |
+
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
|
136 |
+
|
137 |
+
class GPT(nn.Module):
|
138 |
+
|
139 |
+
def __init__(self, config):
|
140 |
+
super().__init__()
|
141 |
+
assert config.input_vocab_size is not None
|
142 |
+
assert config.output_vocab_size is not None
|
143 |
+
assert config.block_size is not None
|
144 |
+
self.config = config
|
145 |
+
|
146 |
+
self.transformer = nn.ModuleDict(dict(
|
147 |
+
wte = nn.Embedding(config.input_vocab_size, config.n_embd),
|
148 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
149 |
+
drop = nn.Dropout(config.dropout),
|
150 |
+
h = nn.ModuleList([Block(config, idx) for idx in range(config.n_layer)]),
|
151 |
+
ln_f = LayerNorm(config.n_embd, bias=config.bias),
|
152 |
+
))
|
153 |
+
self.lm_head = nn.Linear(config.n_embd, config.output_vocab_size, bias=False)
|
154 |
+
|
155 |
+
def get_num_params(self, non_embedding=True):
|
156 |
+
"""
|
157 |
+
Return the number of parameters in the model.
|
158 |
+
For non-embedding count (default), the position embeddings get subtracted.
|
159 |
+
The token embeddings would too, except due to the parameter sharing these
|
160 |
+
params are actually used as weights in the final layer, so we include them.
|
161 |
+
"""
|
162 |
+
n_params = sum(p.numel() for p in self.parameters())
|
163 |
+
if non_embedding:
|
164 |
+
n_params -= self.transformer.wte.weight.numel()
|
165 |
+
n_params -= self.transformer.wpe.weight.numel()
|
166 |
+
return n_params
|
167 |
+
|
168 |
+
def forward(self, idx, merge_context=False, past_kv=None, position_ids=None, use_cache=False):
|
169 |
+
device = idx.device
|
170 |
+
b, t = idx.size()
|
171 |
+
if past_kv is not None:
|
172 |
+
assert t == 1
|
173 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
|
174 |
+
else:
|
175 |
+
if merge_context:
|
176 |
+
assert(idx.shape[1] >= 256+256+1)
|
177 |
+
t = idx.shape[1] - 256
|
178 |
+
else:
|
179 |
+
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
180 |
+
|
181 |
+
# forward the GPT model itself
|
182 |
+
if merge_context:
|
183 |
+
tok_emb = torch.cat([
|
184 |
+
self.transformer.wte(idx[:,:256]) + self.transformer.wte(idx[:,256:256+256]),
|
185 |
+
self.transformer.wte(idx[:,256+256:])
|
186 |
+
], dim=1)
|
187 |
+
else:
|
188 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
|
189 |
+
|
190 |
+
if past_kv is None:
|
191 |
+
past_length = 0
|
192 |
+
past_kv = tuple([None] * len(self.transformer.h))
|
193 |
+
else:
|
194 |
+
past_length = past_kv[0][0].size(-2)
|
195 |
+
|
196 |
+
if position_ids is None:
|
197 |
+
position_ids = torch.arange(past_length, t + past_length, dtype=torch.long, device=device)
|
198 |
+
position_ids = position_ids.unsqueeze(0) # shape (1, t)
|
199 |
+
assert position_ids.shape == (1, t)
|
200 |
+
|
201 |
+
pos_emb = self.transformer.wpe(position_ids) # position embeddings of shape (1, t, n_embd)
|
202 |
+
|
203 |
+
x = self.transformer.drop(tok_emb + pos_emb)
|
204 |
+
|
205 |
+
new_kv = () if use_cache else None
|
206 |
+
|
207 |
+
for i, (block, past_layer_kv) in enumerate(zip(self.transformer.h, past_kv)):
|
208 |
+
x, kv = block(x, past_kv=past_layer_kv, use_cache=use_cache)
|
209 |
+
|
210 |
+
if use_cache:
|
211 |
+
new_kv = new_kv + (kv,)
|
212 |
+
|
213 |
+
x = self.transformer.ln_f(x)
|
214 |
+
|
215 |
+
# inference-time mini-optimization: only forward the lm_head on the very last position
|
216 |
+
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
|
217 |
+
|
218 |
+
return (logits, new_kv)
|
model_fine.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Much of this code is adapted from Andrej Karpathy's NanoGPT
|
3 |
+
(https://github.com/karpathy/nanoGPT)
|
4 |
+
"""
|
5 |
+
from dataclasses import dataclass
|
6 |
+
import math
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
|
12 |
+
from .model import GPT, GPTConfig, MLP
|
13 |
+
|
14 |
+
|
15 |
+
class NonCausalSelfAttention(nn.Module):
|
16 |
+
def __init__(self, config):
|
17 |
+
super().__init__()
|
18 |
+
assert config.n_embd % config.n_head == 0
|
19 |
+
# key, query, value projections for all heads, but in a batch
|
20 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
21 |
+
# output projection
|
22 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
23 |
+
# regularization
|
24 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
25 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
26 |
+
self.n_head = config.n_head
|
27 |
+
self.n_embd = config.n_embd
|
28 |
+
self.dropout = config.dropout
|
29 |
+
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
|
30 |
+
self.flash = (
|
31 |
+
hasattr(torch.nn.functional, "scaled_dot_product_attention")
|
32 |
+
)
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
36 |
+
|
37 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
38 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
39 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
40 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
41 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
42 |
+
|
43 |
+
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
44 |
+
if self.flash:
|
45 |
+
# efficient attention using Flash Attention CUDA kernels
|
46 |
+
y = torch.nn.functional.scaled_dot_product_attention(
|
47 |
+
q, k, v, attn_mask=None, dropout_p=self.dropout, is_causal=False
|
48 |
+
)
|
49 |
+
else:
|
50 |
+
# manual implementation of attention
|
51 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
52 |
+
att = F.softmax(att, dim=-1)
|
53 |
+
att = self.attn_dropout(att)
|
54 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
55 |
+
y = (
|
56 |
+
y.transpose(1, 2).contiguous().view(B, T, C)
|
57 |
+
) # re-assemble all head outputs side by side
|
58 |
+
|
59 |
+
# output projection
|
60 |
+
y = self.resid_dropout(self.c_proj(y))
|
61 |
+
return y
|
62 |
+
|
63 |
+
|
64 |
+
class FineBlock(nn.Module):
|
65 |
+
def __init__(self, config):
|
66 |
+
super().__init__()
|
67 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
68 |
+
self.attn = NonCausalSelfAttention(config)
|
69 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
70 |
+
self.mlp = MLP(config)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
x = x + self.attn(self.ln_1(x))
|
74 |
+
x = x + self.mlp(self.ln_2(x))
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
class FineGPT(GPT):
|
79 |
+
def __init__(self, config):
|
80 |
+
super().__init__(config)
|
81 |
+
del self.lm_head
|
82 |
+
self.config = config
|
83 |
+
self.n_codes_total = config.n_codes_total
|
84 |
+
self.transformer = nn.ModuleDict(
|
85 |
+
dict(
|
86 |
+
wtes=nn.ModuleList(
|
87 |
+
[
|
88 |
+
nn.Embedding(config.input_vocab_size, config.n_embd)
|
89 |
+
for _ in range(config.n_codes_total)
|
90 |
+
]
|
91 |
+
),
|
92 |
+
wpe=nn.Embedding(config.block_size, config.n_embd),
|
93 |
+
drop=nn.Dropout(config.dropout),
|
94 |
+
h=nn.ModuleList([FineBlock(config) for _ in range(config.n_layer)]),
|
95 |
+
ln_f=nn.LayerNorm(config.n_embd),
|
96 |
+
)
|
97 |
+
)
|
98 |
+
self.lm_heads = nn.ModuleList(
|
99 |
+
[
|
100 |
+
nn.Linear(config.n_embd, config.output_vocab_size, bias=False)
|
101 |
+
for _ in range(config.n_codes_given, self.n_codes_total)
|
102 |
+
]
|
103 |
+
)
|
104 |
+
for i in range(self.n_codes_total - config.n_codes_given):
|
105 |
+
self.transformer.wtes[i + 1].weight = self.lm_heads[i].weight
|
106 |
+
|
107 |
+
def forward(self, pred_idx, idx):
|
108 |
+
device = idx.device
|
109 |
+
b, t, codes = idx.size()
|
110 |
+
assert (
|
111 |
+
t <= self.config.block_size
|
112 |
+
), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
113 |
+
assert pred_idx > 0, "cannot predict 0th codebook"
|
114 |
+
assert codes == self.n_codes_total, (b, t, codes)
|
115 |
+
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
|
116 |
+
|
117 |
+
# forward the GPT model itself
|
118 |
+
tok_embs = [
|
119 |
+
wte(idx[:, :, i]).unsqueeze(-1) for i, wte in enumerate(self.transformer.wtes)
|
120 |
+
] # token embeddings of shape (b, t, n_embd)
|
121 |
+
tok_emb = torch.cat(tok_embs, dim=-1)
|
122 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, n_embd)
|
123 |
+
x = tok_emb[:, :, :, : pred_idx + 1].sum(dim=-1)
|
124 |
+
x = self.transformer.drop(x + pos_emb)
|
125 |
+
for block in self.transformer.h:
|
126 |
+
x = block(x)
|
127 |
+
x = self.transformer.ln_f(x)
|
128 |
+
logits = self.lm_heads[pred_idx - self.config.n_codes_given](x)
|
129 |
+
return logits
|
130 |
+
|
131 |
+
def get_num_params(self, non_embedding=True):
|
132 |
+
"""
|
133 |
+
Return the number of parameters in the model.
|
134 |
+
For non-embedding count (default), the position embeddings get subtracted.
|
135 |
+
The token embeddings would too, except due to the parameter sharing these
|
136 |
+
params are actually used as weights in the final layer, so we include them.
|
137 |
+
"""
|
138 |
+
n_params = sum(p.numel() for p in self.parameters())
|
139 |
+
if non_embedding:
|
140 |
+
for wte in self.transformer.wtes:
|
141 |
+
n_params -= wte.weight.numel()
|
142 |
+
n_params -= self.transformer.wpe.weight.numel()
|
143 |
+
return n_params
|
144 |
+
|
145 |
+
|
146 |
+
@dataclass
|
147 |
+
class FineGPTConfig(GPTConfig):
|
148 |
+
n_codes_total: int = 8
|
149 |
+
n_codes_given: int = 1
|