Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the model and tokenizer
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("MarkAdamsMSBA24/ADRv2024")
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained("MarkAdamsMSBA24/ADRv2024")
|
8 |
+
|
9 |
+
# Define the prediction function
|
10 |
+
def get_prediction(text):
|
11 |
+
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True, padding=True)
|
12 |
+
with torch.no_grad():
|
13 |
+
outputs = model(**inputs)
|
14 |
+
prediction_scores = outputs.logits
|
15 |
+
predicted_class = torch.argmax(prediction_scores, dim=-1).item()
|
16 |
+
return f"Predicted Class: {predicted_class}", prediction_scores.tolist()
|
17 |
+
|
18 |
+
iface = gr.Interface(
|
19 |
+
fn=get_prediction,
|
20 |
+
inputs=gr.Textbox(lines=4, placeholder="Type your text..."),
|
21 |
+
outputs=[gr.Textbox(label="Prediction"), gr.Dataframe(label="Scores")],
|
22 |
+
title="BERT Sequence Classification Demo",
|
23 |
+
description="This demo uses a BERT model hosted on Hugging Face to classify text sequences."
|
24 |
+
)
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
iface.launch()
|