Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
-
import torch
|
4 |
-
|
5 |
-
# Load the model and tokenizer
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained("MarkAdamsMSBA24/ADRv2024")
|
7 |
-
model = AutoModelForSequenceClassification.from_pretrained("MarkAdamsMSBA24/ADRv2024")
|
8 |
-
|
9 |
-
# Define the prediction function
|
10 |
-
|
11 |
-
def get_prediction(text):
|
12 |
-
X_test = str(text).lower()
|
13 |
-
encoded_input = tokenizer(X_test, return_tensors='pt')
|
14 |
-
output = model(**encoded_input)
|
15 |
-
scores = output[0][0].detach()
|
16 |
-
scores = torch.nn.functional.softmax(scores)
|
17 |
-
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}
|
18 |
-
|
19 |
-
iface = gr.Interface(
|
20 |
-
fn=get_prediction,
|
21 |
-
inputs=gr.Textbox(lines=4, placeholder="Type your text..."),
|
22 |
-
outputs=[gr.Label(label="Prediction"), gr.Dataframe(label="Scores")],
|
23 |
-
title="BERT Sequence Classification Demo",
|
24 |
-
description="This demo uses a BERT model hosted on Hugging Face to classify text sequences."
|
25 |
-
)
|
26 |
-
|
27 |
-
if __name__ == "__main__":
|
28 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|