MarkAdamsMSBA24 commited on
Commit
1e27834
·
verified ·
1 Parent(s): de27ad0

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -28
app.py DELETED
@@ -1,28 +0,0 @@
1
- import gradio as gr
2
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
- import torch
4
-
5
- # Load the model and tokenizer
6
- tokenizer = AutoTokenizer.from_pretrained("MarkAdamsMSBA24/ADRv2024")
7
- model = AutoModelForSequenceClassification.from_pretrained("MarkAdamsMSBA24/ADRv2024")
8
-
9
- # Define the prediction function
10
-
11
- def get_prediction(text):
12
- X_test = str(text).lower()
13
- encoded_input = tokenizer(X_test, return_tensors='pt')
14
- output = model(**encoded_input)
15
- scores = output[0][0].detach()
16
- scores = torch.nn.functional.softmax(scores)
17
- return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}
18
-
19
- iface = gr.Interface(
20
- fn=get_prediction,
21
- inputs=gr.Textbox(lines=4, placeholder="Type your text..."),
22
- outputs=[gr.Label(label="Prediction"), gr.Dataframe(label="Scores")],
23
- title="BERT Sequence Classification Demo",
24
- description="This demo uses a BERT model hosted on Hugging Face to classify text sequences."
25
- )
26
-
27
- if __name__ == "__main__":
28
- iface.launch()