Spaces:
Sleeping
Sleeping
John Graham Reynolds
commited on
Commit
·
6e06674
1
Parent(s):
0e29746
remove env var testing
Browse files
app.py
CHANGED
|
@@ -27,19 +27,9 @@ EXAMPLE_PROMPTS = [
|
|
| 27 |
st.set_page_config(layout="wide")
|
| 28 |
st.title(TITLE)
|
| 29 |
|
| 30 |
-
# test env vars get output correctly - do we need to configure PAT access further?
|
| 31 |
-
st.markdown(DESCRIPTION)
|
| 32 |
-
st.markdown("\n")
|
| 33 |
-
st.write(DATABRICKS_HOST)
|
| 34 |
-
st.markdown("\n")
|
| 35 |
-
st.write(DATABRICKS_TOKEN)
|
| 36 |
-
st.markdown("\n")
|
| 37 |
-
st.write(VS_ENDPOINT_NAME)
|
| 38 |
-
st.markdown("\n")
|
| 39 |
-
|
| 40 |
# use this to format later
|
| 41 |
-
|
| 42 |
-
|
| 43 |
|
| 44 |
# Same embedding model we used to create embeddings of terms
|
| 45 |
# make sure we cache this so that it doesnt redownload each time, hindering Space start time if sleeping
|
|
@@ -56,33 +46,6 @@ vector_store = DatabricksVectorSearch(
|
|
| 56 |
results = vector_store.similarity_search(query="Tell me about what a data lake is.", k=5)
|
| 57 |
st.write(results)
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
# TODO *** configure to run only on prompt for verification?
|
| 62 |
-
# vsc = VectorSearchClient()
|
| 63 |
-
|
| 64 |
-
# question = "What is the data lake?"
|
| 65 |
-
# # question_2 = "What does EDW stand for?"
|
| 66 |
-
# # question_3 = "What does AIDET stand for?"
|
| 67 |
-
|
| 68 |
-
# deploy_client = deployments.get_deploy_client("databricks")
|
| 69 |
-
# response = deploy_client.predict(endpoint="databricks-bge-large-en", inputs={"input": [question]})
|
| 70 |
-
# embeddings = [e['embedding'] for e in response.data]
|
| 71 |
-
|
| 72 |
-
# results = vsc.get_index(VS_ENDPOINT_NAME, VS_INDEX_NAME).similarity_search(
|
| 73 |
-
# query_vector=embeddings[0],
|
| 74 |
-
# columns=["name", "description"],
|
| 75 |
-
# num_results=5)
|
| 76 |
-
|
| 77 |
-
# st.write(results)
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
# print(results)
|
| 81 |
-
# print("---------------------------------------")
|
| 82 |
-
# vumc_terms = results.get('result', {}).get('data_array', [])
|
| 83 |
-
# print(vumc_terms)
|
| 84 |
-
|
| 85 |
-
|
| 86 |
# DBRX mainbody minus functions
|
| 87 |
|
| 88 |
# main = st.container()
|
|
|
|
| 27 |
st.set_page_config(layout="wide")
|
| 28 |
st.title(TITLE)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
# use this to format later
|
| 31 |
+
with open("style.css") as css:
|
| 32 |
+
st.markdown( f'<style>{css.read()}</style>' , unsafe_allow_html= True)
|
| 33 |
|
| 34 |
# Same embedding model we used to create embeddings of terms
|
| 35 |
# make sure we cache this so that it doesnt redownload each time, hindering Space start time if sleeping
|
|
|
|
| 46 |
results = vector_store.similarity_search(query="Tell me about what a data lake is.", k=5)
|
| 47 |
st.write(results)
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
# DBRX mainbody minus functions
|
| 50 |
|
| 51 |
# main = st.container()
|