import evaluate from evaluate.utils import infer_gradio_input_types, json_to_string_type, parse_readme from fixed_f1 import FixedF1 # from evaluate.utils import launch_gradio_widget # using this directly is erroneous - lets fix this metric = FixedF1() if isinstance(metric.features, list): (feature_names, feature_types) = zip(*metric.features[0].items()) else: (feature_names, feature_types) = zip(*metric.features.items()) gradio_input_types = infer_gradio_input_types(feature_types) gradio_input_types = infer_gradio_input_types(feature_types) def compute(): metric._compute() import gradio as gr space = gr.Interface( fn=compute, inputs=gr.Dataframe( headers=feature_names, col_count=len(feature_names), row_count=1, datatype=json_to_string_type(gradio_input_types), ), outputs=gr.Textbox(label=metric.name), description=( metric.info.description + "\nIf this is a text-based metric, make sure to wrap your input in double quotes." " Alternatively you can use a JSON-formatted list as input." ), title=f"Metric: {metric.name}", article=parse_readme("./README.md"), # TODO: load test cases and use them to populate examples # examples=[parse_test_cases(test_cases, feature_names, gradio_input_types)] ) space.launch()