MarieAngeA13 commited on
Commit
2c6ad4c
·
1 Parent(s): 8ecf454

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -13
app.py CHANGED
@@ -1,8 +1,6 @@
1
- pip install googletrans==4.0.0rc1
2
  import streamlit as st
3
  from transformers import pipeline
4
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
5
- from googletrans import Translator
6
 
7
  # Load the sentiment analysis model from our BERT model
8
  classifier = pipeline("text-classification", model = "MarieAngeA13/Sentiment-Analysis-BERT")
@@ -15,21 +13,11 @@ st.write('Enter some text and we will predict its sentiment!')
15
  translator = Translator()
16
  text_input = st.text_input('Enter text here')
17
 
18
- detected_language = translator.detect(text_input).lang
19
-
20
- if detected_language == 'fr':
21
- translation = translator.translate(text_input, src='fr', dest='en')
22
- translated_text = translation.text
23
- else:
24
- translated_text = text_input
25
- print(translated_text)
26
-
27
-
28
 
29
  # When the user submits text, run the sentiment analysis model on it
30
  if st.button('Submit'):
31
  # Predict the sentiment of the text using our own BERT model
32
- output = classifier(translated_text)
33
 
34
  best_prediction = output[0]
35
  sentiment = best_prediction['label']
 
 
1
  import streamlit as st
2
  from transformers import pipeline
3
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
 
4
 
5
  # Load the sentiment analysis model from our BERT model
6
  classifier = pipeline("text-classification", model = "MarieAngeA13/Sentiment-Analysis-BERT")
 
13
  translator = Translator()
14
  text_input = st.text_input('Enter text here')
15
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  # When the user submits text, run the sentiment analysis model on it
18
  if st.button('Submit'):
19
  # Predict the sentiment of the text using our own BERT model
20
+ output = classifier(text_input)
21
 
22
  best_prediction = output[0]
23
  sentiment = best_prediction['label']