Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
# Load the pre-trained Haar Cascade classifier for face detection | |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') | |
def detect_faces(image): | |
# Convert RGB image to OpenCV BGR format | |
img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
# Convert to grayscale for face detection | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
# Perform face detection | |
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) | |
# Draw rectangles around detected faces | |
for (x, y, w, h) in faces: | |
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2) | |
# Convert back to RGB for display | |
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
# Use gr.Video with live=True for live webcam feed | |
webcam_interface = gr.Interface( | |
fn=detect_faces, | |
inputs=gr.Video(streaming=True, live=True), # Use `live=True` instead of `source="webcam"` | |
outputs="image", | |
title="Live Webcam Face Detection", | |
description="Displays the live feed from your webcam and detects faces in real-time." | |
) | |
# Launch the Gradio app | |
webcam_interface.launch() | |