import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline import graphviz from PIL import Image # تحميل موديل التلخيص model_name = "csebuetnlp/mT5_multilingual_XLSum" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # تحميل موديل توليد الأسئلة question_generator = pipeline("text2text-generation", model="valhalla/t5-small-e2e-qg") # دالة تلخيص النص def summarize_text(text, src_lang): inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True) summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary # دالة توليد الأسئلة def generate_questions(summary): questions = question_generator(summary, max_length=64, num_return_sequences=5) return [q['generated_text'] for q in questions] # دالة توليد خريطة مفاهيم def generate_concept_map(summary, questions): dot = graphviz.Digraph(comment='Concept Map') dot.node('A', summary) for i, question in enumerate(questions): dot.node(f'Q{i}', question) dot.edge('A', f'Q{i}') dot.render('concept_map', format='png') return Image.open('concept_map.png') # دالة التحليل الكامل def analyze_text(text, lang): summary = summarize_text(text, lang) questions = generate_questions(summary) concept_map_image = generate_concept_map(summary, questions) return summary, questions, concept_map_image # أمثلة للنصوص examples = [ ["الذكاء الاصطناعي هو فرع من علوم الكمبيوتر يهدف إلى إنشاء آلات ذكية تعمل وتتفاعل مثل البشر. بعض الأنشطة التي صممت أجهزة الكمبيوتر الذكية للقيام بها تشمل: التعرف على الصوت، التعلم، التخطيط، وحل المشاكل.", "ar"], ["Artificial intelligence is a branch of computer science that aims to create intelligent machines that work and react like humans. Some of the activities computers with artificial intelligence are designed for include: Speech recognition, learning, planning, and problem-solving.", "en"] ] # واجهة Gradio iface = gr.Interface( fn=analyze_text, inputs=[gr.Textbox(lines=10, placeholder="Enter text here........"), gr.Dropdown(["ar", "en"], label="Language")], outputs=[gr.Textbox(label="Summary"), gr.Textbox(label="Questions"), gr.Image(label="Concept Map")], examples=examples, title="AI Study Assistant", description="Enter a text in Arabic or English and the model will summarize it and generate various questions about it in addition to generating a concept map, or you can choose one of the examples." ) # تشغيل التطبيق if __name__ == "__main__": iface.launch()