Transfer code
Browse files- app.py +339 -1
- katip-december.csv +0 -0
- requirements.txt +13 -0
- stopwords-tl.json +1 -0
app.py
CHANGED
|
@@ -1,7 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
def greet(name):
|
| 4 |
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
iface = gr.Interface(fn=
|
| 7 |
iface.launch()
|
|
|
|
| 1 |
+
# Required Libraries
|
| 2 |
+
|
| 3 |
+
#Base and Cleaning
|
| 4 |
+
import json
|
| 5 |
+
import requests
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import numpy as np
|
| 8 |
+
import emoji
|
| 9 |
+
import regex
|
| 10 |
+
import re
|
| 11 |
+
import string
|
| 12 |
+
from collections import Counter
|
| 13 |
+
import tqdm
|
| 14 |
+
from operator import itemgetter
|
| 15 |
+
|
| 16 |
+
#Visualizations
|
| 17 |
+
import plotly.express as px
|
| 18 |
+
import seaborn as sns
|
| 19 |
+
import matplotlib.pyplot as plt
|
| 20 |
+
import pyLDAvis.gensim
|
| 21 |
+
import chart_studio
|
| 22 |
+
import chart_studio.plotly as py
|
| 23 |
+
import chart_studio.tools as tls
|
| 24 |
+
|
| 25 |
+
#Natural Language Processing (NLP)
|
| 26 |
+
import spacy
|
| 27 |
+
import gensim
|
| 28 |
+
import json
|
| 29 |
+
from spacy.tokenizer import Tokenizer
|
| 30 |
+
from gensim.corpora import Dictionary
|
| 31 |
+
from gensim.models.ldamulticore import LdaMulticore
|
| 32 |
+
from gensim.models.coherencemodel import CoherenceModel
|
| 33 |
+
from gensim.parsing.preprocessing import STOPWORDS as SW
|
| 34 |
+
from sklearn.decomposition import LatentDirichletAllocation, TruncatedSVD
|
| 35 |
+
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
|
| 36 |
+
from sklearn.model_selection import GridSearchCV
|
| 37 |
+
from pprint import pprint
|
| 38 |
+
from wordcloud import STOPWORDS
|
| 39 |
+
from gensim.parsing.preprocessing import preprocess_string, strip_punctuation, strip_numeric
|
| 40 |
+
|
| 41 |
import gradio as gr
|
| 42 |
|
| 43 |
+
def give_emoji_free_text(text):
|
| 44 |
+
"""
|
| 45 |
+
Removes emoji's from tweets
|
| 46 |
+
Accepts:
|
| 47 |
+
Text (tweets)
|
| 48 |
+
Returns:
|
| 49 |
+
Text (emoji free tweets)
|
| 50 |
+
"""
|
| 51 |
+
emoji_list = [c for c in text if c in emoji.EMOJI_DATA]
|
| 52 |
+
clean_text = ' '.join([str for str in text.split() if not any(i in str for i in emoji_list)])
|
| 53 |
+
return clean_text
|
| 54 |
+
|
| 55 |
+
def url_free_text(text):
|
| 56 |
+
'''
|
| 57 |
+
Cleans text from urls
|
| 58 |
+
'''
|
| 59 |
+
text = re.sub(r'http\S+', '', text)
|
| 60 |
+
return text
|
| 61 |
+
|
| 62 |
+
# Tokenizer function
|
| 63 |
+
def tokenize(text):
|
| 64 |
+
"""
|
| 65 |
+
Parses a string into a list of semantic units (words)
|
| 66 |
+
Args:
|
| 67 |
+
text (str): The string that the function will tokenize.
|
| 68 |
+
Returns:
|
| 69 |
+
list: tokens parsed out
|
| 70 |
+
"""
|
| 71 |
+
# Removing url's
|
| 72 |
+
pattern = r"http\S+"
|
| 73 |
+
|
| 74 |
+
tokens = re.sub(pattern, "", text) # https://www.youtube.com/watch?v=O2onA4r5UaY
|
| 75 |
+
tokens = re.sub('[^a-zA-Z 0-9]', '', text)
|
| 76 |
+
tokens = re.sub('[%s]' % re.escape(string.punctuation), '', text) # Remove punctuation
|
| 77 |
+
tokens = re.sub('\w*\d\w*', '', text) # Remove words containing numbers
|
| 78 |
+
# tokens = re.sub('@*!*$*', '', text) # Remove @ ! $
|
| 79 |
+
tokens = tokens.strip(',') # TESTING THIS LINE
|
| 80 |
+
tokens = tokens.strip('?') # TESTING THIS LINE
|
| 81 |
+
tokens = tokens.strip('!') # TESTING THIS LINE
|
| 82 |
+
tokens = tokens.strip("'") # TESTING THIS LINE
|
| 83 |
+
tokens = tokens.strip(".") # TESTING THIS LINE
|
| 84 |
+
|
| 85 |
+
tokens = tokens.lower().split() # Make text lowercase and split it
|
| 86 |
+
|
| 87 |
+
return tokens
|
| 88 |
+
|
| 89 |
+
def compute_coherence_values(dictionary, corpus, texts, limit, start=2, step=1):
|
| 90 |
+
coherence_values = []
|
| 91 |
+
model_list = []
|
| 92 |
+
for num_topics in range(start, limit, step):
|
| 93 |
+
model = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
| 94 |
+
num_topics=num_topics,
|
| 95 |
+
random_state=100,
|
| 96 |
+
chunksize=200,
|
| 97 |
+
passes=10,
|
| 98 |
+
per_word_topics=True,
|
| 99 |
+
id2word=id2word)
|
| 100 |
+
model_list.append(model)
|
| 101 |
+
coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence='c_v')
|
| 102 |
+
coherence_values.append(coherencemodel.get_coherence())
|
| 103 |
+
|
| 104 |
+
return model_list, coherence_values
|
| 105 |
+
|
| 106 |
+
def compute_coherence_values2(corpus, dictionary, k, a, b):
|
| 107 |
+
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
| 108 |
+
id2word=id2word,
|
| 109 |
+
num_topics=num_topics,
|
| 110 |
+
random_state=100,
|
| 111 |
+
chunksize=200,
|
| 112 |
+
passes=10,
|
| 113 |
+
alpha=a,
|
| 114 |
+
eta=b,
|
| 115 |
+
per_word_topics=True)
|
| 116 |
+
coherence_model_lda = CoherenceModel(model=lda_model, texts=df['lemma_tokens'], dictionary=id2word, coherence='c_v')
|
| 117 |
+
|
| 118 |
+
return coherence_model_lda.get_coherence()
|
| 119 |
+
|
| 120 |
+
def assignTopic(l):
|
| 121 |
+
maxTopic = max(l,key=itemgetter(1))[0]
|
| 122 |
+
return maxTopic
|
| 123 |
+
|
| 124 |
+
def get_topic_value(row, i):
|
| 125 |
+
if len(row) == 1:
|
| 126 |
+
return row[0][1]
|
| 127 |
+
else:
|
| 128 |
+
return row[i][1]
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
df = pd.DataFrame()
|
| 132 |
+
|
| 133 |
+
def dataframeProcessing(dataset):
|
| 134 |
+
# Opening JSON file
|
| 135 |
+
f = open('stopwords-tl.json')
|
| 136 |
+
tlStopwords = json.loads(f.read())
|
| 137 |
+
stopwords = set(STOPWORDS)
|
| 138 |
+
stopwords.update(tlStopwords)
|
| 139 |
+
stopwords.update(['na', 'sa', 'ko', 'ako', 'ng', 'mga', 'ba', 'ka', 'yung', 'lang', 'di', 'mo', 'kasi'])
|
| 140 |
+
|
| 141 |
+
df = pd.read_csv('katip-december.csv')
|
| 142 |
+
df.rename(columns = {'tweet':'original_tweets'}, inplace = True)
|
| 143 |
+
df = df.apply(lambda row: row[df['language'].isin(['en'])])
|
| 144 |
+
df.reset_index(inplace=True)
|
| 145 |
+
|
| 146 |
+
# Apply the function above and get tweets free of emoji's
|
| 147 |
+
call_emoji_free = lambda x: give_emoji_free_text(x)
|
| 148 |
+
|
| 149 |
+
# Apply `call_emoji_free` which calls the function to remove all emoji's
|
| 150 |
+
df['emoji_free_tweets'] = df['original_tweets'].apply(call_emoji_free)
|
| 151 |
+
|
| 152 |
+
#Create a new column with url free tweets
|
| 153 |
+
df['url_free_tweets'] = df['emoji_free_tweets'].apply(url_free_text)
|
| 154 |
+
|
| 155 |
+
# Load spacy
|
| 156 |
+
# Make sure to restart the runtime after running installations and libraries tab
|
| 157 |
+
nlp = spacy.load('en_core_web_lg')
|
| 158 |
+
|
| 159 |
+
# Tokenizer
|
| 160 |
+
tokenizer = Tokenizer(nlp.vocab)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
# Custom stopwords
|
| 164 |
+
custom_stopwords = ['hi','\n','\n\n', '&', ' ', '.', '-', 'got', "it's", 'it’s', "i'm", 'i’m', 'im', 'want', 'like', '$', '@']
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
# Customize stop words by adding to the default list
|
| 168 |
+
STOP_WORDS = nlp.Defaults.stop_words.union(custom_stopwords)
|
| 169 |
+
|
| 170 |
+
# ALL_STOP_WORDS = spacy + gensim + wordcloud
|
| 171 |
+
ALL_STOP_WORDS = STOP_WORDS.union(SW).union(stopwords)
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
tokens = []
|
| 175 |
+
STOP_WORDS.update(stopwords)
|
| 176 |
+
|
| 177 |
+
for doc in tokenizer.pipe(df['url_free_tweets'], batch_size=500):
|
| 178 |
+
doc_tokens = []
|
| 179 |
+
for token in doc:
|
| 180 |
+
if token.text.lower() not in STOP_WORDS:
|
| 181 |
+
doc_tokens.append(token.text.lower())
|
| 182 |
+
tokens.append(doc_tokens)
|
| 183 |
+
|
| 184 |
+
# Makes tokens column
|
| 185 |
+
df['tokens'] = tokens
|
| 186 |
+
|
| 187 |
+
# Make tokens a string again
|
| 188 |
+
df['tokens_back_to_text'] = [' '.join(map(str, l)) for l in df['tokens']]
|
| 189 |
+
|
| 190 |
+
def get_lemmas(text):
|
| 191 |
+
'''Used to lemmatize the processed tweets'''
|
| 192 |
+
lemmas = []
|
| 193 |
+
|
| 194 |
+
doc = nlp(text)
|
| 195 |
+
|
| 196 |
+
# Something goes here :P
|
| 197 |
+
for token in doc:
|
| 198 |
+
if ((token.is_stop == False) and (token.is_punct == False)) and (token.pos_ != 'PRON'):
|
| 199 |
+
lemmas.append(token.lemma_)
|
| 200 |
+
|
| 201 |
+
return lemmas
|
| 202 |
+
|
| 203 |
+
df['lemmas'] = df['tokens_back_to_text'].apply(get_lemmas)
|
| 204 |
+
|
| 205 |
+
# Make lemmas a string again
|
| 206 |
+
df['lemmas_back_to_text'] = [' '.join(map(str, l)) for l in df['lemmas']]
|
| 207 |
+
|
| 208 |
+
# Apply tokenizer
|
| 209 |
+
df['lemma_tokens'] = df['lemmas_back_to_text'].apply(tokenize)
|
| 210 |
+
|
| 211 |
+
# Create a id2word dictionary
|
| 212 |
+
id2word = Dictionary(df['lemma_tokens'])
|
| 213 |
+
|
| 214 |
+
# Filtering Extremes
|
| 215 |
+
id2word.filter_extremes(no_below=2, no_above=.99)
|
| 216 |
+
print(len(id2word))
|
| 217 |
+
|
| 218 |
+
# Creating a corpus object
|
| 219 |
+
corpus = [id2word.doc2bow(d) for d in df['lemma_tokens']]
|
| 220 |
+
|
| 221 |
+
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
| 222 |
+
id2word=id2word,
|
| 223 |
+
num_topics=5,
|
| 224 |
+
random_state=100,
|
| 225 |
+
chunksize=200,
|
| 226 |
+
passes=10,
|
| 227 |
+
per_word_topics=True)
|
| 228 |
+
|
| 229 |
+
pprint(lda_model.print_topics())
|
| 230 |
+
doc_lda = lda_model[corpus]
|
| 231 |
+
|
| 232 |
+
coherence_model_lda = CoherenceModel(model=lda_model, texts=df['lemma_tokens'], dictionary=id2word, coherence='c_v')
|
| 233 |
+
coherence_lda = coherence_model_lda.get_coherence()
|
| 234 |
+
|
| 235 |
+
model_list, coherence_values = compute_coherence_values(dictionary=id2word, corpus=corpus,
|
| 236 |
+
texts=df['lemma_tokens'],
|
| 237 |
+
start=2,
|
| 238 |
+
limit=10,
|
| 239 |
+
step=1)
|
| 240 |
+
|
| 241 |
+
k_max = max(coherence_values)
|
| 242 |
+
num_topics = coherence_values.index(k_max) + 2
|
| 243 |
+
|
| 244 |
+
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
| 245 |
+
id2word=id2word,
|
| 246 |
+
num_topics=num_topics,
|
| 247 |
+
random_state=100,
|
| 248 |
+
chunksize=200,
|
| 249 |
+
passes=10,
|
| 250 |
+
per_word_topics=True)
|
| 251 |
+
|
| 252 |
+
grid = {}
|
| 253 |
+
grid['Validation_Set'] = {}
|
| 254 |
+
|
| 255 |
+
alpha = [0.05, 0.1, 0.5, 1, 5, 10]
|
| 256 |
+
|
| 257 |
+
beta = [0.05, 0.1, 0.5, 1, 5, 10]
|
| 258 |
+
|
| 259 |
+
num_of_docs = len(corpus)
|
| 260 |
+
corpus_sets = [gensim.utils.ClippedCorpus(corpus, int(num_of_docs*0.75)),
|
| 261 |
+
corpus]
|
| 262 |
+
corpus_title = ['75% Corpus', '100% Corpus']
|
| 263 |
+
model_results = {'Validation_Set': [],
|
| 264 |
+
'Alpha': [],
|
| 265 |
+
'Beta': [],
|
| 266 |
+
'Coherence': []
|
| 267 |
+
}
|
| 268 |
+
if 1 == 1:
|
| 269 |
+
pbar = tqdm.tqdm(total=540)
|
| 270 |
+
|
| 271 |
+
for i in range(len(corpus_sets)):
|
| 272 |
+
for a in alpha:
|
| 273 |
+
for b in beta:
|
| 274 |
+
cv = compute_coherence_values2(corpus=corpus_sets[i], dictionary=id2word, k=num_topics, a=a, b=b)
|
| 275 |
+
model_results['Validation_Set'].append(corpus_title[i])
|
| 276 |
+
model_results['Alpha'].append(a)
|
| 277 |
+
model_results['Beta'].append(b)
|
| 278 |
+
model_results['Coherence'].append(cv)
|
| 279 |
+
|
| 280 |
+
pbar.update(1)
|
| 281 |
+
pd.DataFrame(model_results).to_csv('lda_tuning_results_new.csv', index=False)
|
| 282 |
+
pbar.close()
|
| 283 |
+
|
| 284 |
+
params_df = pd.read_csv('lda_tuning_results_new.csv')
|
| 285 |
+
params_df = params_df[params_df.Validation_Set == '100% Corpus']
|
| 286 |
+
params_df.reset_index(inplace=True)
|
| 287 |
+
|
| 288 |
+
max_params = params_df.loc[params_df['Coherence'].idxmax()]
|
| 289 |
+
max_coherence = max_params['Coherence']
|
| 290 |
+
max_alpha = max_params['Alpha']
|
| 291 |
+
max_beta = max_params['Beta']
|
| 292 |
+
|
| 293 |
+
lda_model_final = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
| 294 |
+
id2word=id2word,
|
| 295 |
+
num_topics=7,
|
| 296 |
+
random_state=100,
|
| 297 |
+
chunksize=200,
|
| 298 |
+
passes=10,
|
| 299 |
+
alpha=max_alpha,
|
| 300 |
+
eta=max_beta,
|
| 301 |
+
per_word_topics=True)
|
| 302 |
+
|
| 303 |
+
coherence_model_lda = CoherenceModel(model=lda_model_final, texts=df['lemma_tokens'], dictionary=id2word,
|
| 304 |
+
coherence='c_v')
|
| 305 |
+
coherence_lda = coherence_model_lda.get_coherence()
|
| 306 |
+
|
| 307 |
+
lda_topics = lda_model_final.show_topics(num_words=10)
|
| 308 |
+
|
| 309 |
+
topics = []
|
| 310 |
+
filters = [lambda x: x.lower(), strip_punctuation, strip_numeric]
|
| 311 |
+
|
| 312 |
+
for topic in lda_topics:
|
| 313 |
+
print(topic)
|
| 314 |
+
topics.append(preprocess_string(topic[1], filters))
|
| 315 |
+
|
| 316 |
+
df['topic'] = [sorted(lda_model_final[corpus][text][0]) for text in range(len(df['original_tweets']))]
|
| 317 |
+
|
| 318 |
+
df = df[df['topic'].map(lambda d: len(d)) > 0]
|
| 319 |
+
df['topic'][0]
|
| 320 |
+
|
| 321 |
+
df['max_topic'] = df['topic'].map(lambda row: assignTopic(row))
|
| 322 |
+
|
| 323 |
+
topic_clusters = []
|
| 324 |
+
for i in range(num_topics):
|
| 325 |
+
topic_clusters.append(df[df['max_topic'].isin(([i]))])
|
| 326 |
+
topic_clusters[i] = topic_clusters[i]['original_tweets'].tolist()
|
| 327 |
+
|
| 328 |
+
for i in range(len(topic_clusters)):
|
| 329 |
+
tweets = df.loc[df['max_topic'] == i]
|
| 330 |
+
tweets['topic'] = tweets['topic'].apply(lambda x: get_topic_value(x, i))
|
| 331 |
+
# tweets['topic'] = [row[i][1] for row in tweets['topic']]
|
| 332 |
+
tweets_sorted = tweets.sort_values('topic', ascending=False)
|
| 333 |
+
tweets_sorted.drop_duplicates(subset=['original_tweets'])
|
| 334 |
+
rep_tweets = tweets_sorted['original_tweets']
|
| 335 |
+
rep_tweets = [*set(rep_tweets)]
|
| 336 |
+
print('Topic ', i)
|
| 337 |
+
print(rep_tweets[:5])
|
| 338 |
+
|
| 339 |
+
return df
|
| 340 |
+
|
| 341 |
def greet(name):
|
| 342 |
return "Hello " + name + "!!"
|
| 343 |
|
| 344 |
+
iface = gr.Interface(fn=dataframeProcessing, outputs=gr.Dataframe(headers=['original_tweets', 'max_topic']))
|
| 345 |
iface.launch()
|
katip-december.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
emoji==1.7.0
|
| 2 |
+
pandas-profiling==2.*
|
| 3 |
+
plotly==4.*
|
| 4 |
+
spacy>=3.0.0,<4.0.0
|
| 5 |
+
en_core_web_lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.5.0/en_core_web_lg-3.5.0-py3-none-any.whl
|
| 6 |
+
pyldavis
|
| 7 |
+
gensim
|
| 8 |
+
chart_studio
|
| 9 |
+
autopep8
|
| 10 |
+
transformers
|
| 11 |
+
sentencepiece
|
| 12 |
+
bert-extractive-summarizer
|
| 13 |
+
tqdm
|
stopwords-tl.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
["akin","aking","ako","alin","am","amin","aming","ang","ano","anumang","apat","at","atin","ating","ay","bababa","bago","bakit","bawat","bilang","dahil","dalawa","dapat","din","dito","doon","gagawin","gayunman","ginagawa","ginawa","ginawang","gumawa","gusto","habang","hanggang","hindi","huwag","iba","ibaba","ibabaw","ibig","ikaw","ilagay","ilalim","ilan","inyong","isa","isang","itaas","ito","iyo","iyon","iyong","ka","kahit","kailangan","kailanman","kami","kanila","kanilang","kanino","kanya","kanyang","kapag","kapwa","karamihan","katiyakan","katulad","kaya","kaysa","ko","kong","kulang","kumuha","kung","laban","lahat","lamang","likod","lima","maaari","maaaring","maging","mahusay","makita","marami","marapat","masyado","may","mayroon","mga","minsan","mismo","mula","muli","na","nabanggit","naging","nagkaroon","nais","nakita","namin","napaka","narito","nasaan","ng","ngayon","ni","nila","nilang","nito","niya","niyang","noon","o","pa","paano","pababa","paggawa","pagitan","pagkakaroon","pagkatapos","palabas","pamamagitan","panahon","pangalawa","para","paraan","pareho","pataas","pero","pumunta","pumupunta","sa","saan","sabi","sabihin","sarili","sila","sino","siya","tatlo","tayo","tulad","tungkol","una","walang"]
|