Manyue-DataScientist commited on
Commit
941a278
·
verified ·
1 Parent(s): 66af41e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -6
app.py CHANGED
@@ -1,25 +1,21 @@
1
  import streamlit as st
2
  from pyannote.audio import Pipeline
3
- import whisper
4
  import tempfile
5
  import os
6
  import torch
7
  from transformers import pipeline as tf_pipeline
8
 
9
- # Cache the model loading using streamlit
10
  @st.cache_resource
11
  def load_models():
12
  try:
13
- # Load diarization model efficiently
14
  diarization = Pipeline.from_pretrained(
15
  "pyannote/speaker-diarization",
16
  use_auth_token=st.secrets["hf_token"]
17
  )
18
 
19
- # Load smaller whisper model for faster processing
20
- transcriber = whisper.load_model("base")
21
 
22
- # Load efficient summarizer
23
  summarizer = tf_pipeline(
24
  "summarization",
25
  model="facebook/bart-large-cnn",
 
1
  import streamlit as st
2
  from pyannote.audio import Pipeline
3
+ from openai import whisper # Changed import
4
  import tempfile
5
  import os
6
  import torch
7
  from transformers import pipeline as tf_pipeline
8
 
 
9
  @st.cache_resource
10
  def load_models():
11
  try:
 
12
  diarization = Pipeline.from_pretrained(
13
  "pyannote/speaker-diarization",
14
  use_auth_token=st.secrets["hf_token"]
15
  )
16
 
17
+ transcriber = whisper.load_model("base") # This should work now
 
18
 
 
19
  summarizer = tf_pipeline(
20
  "summarization",
21
  model="facebook/bart-large-cnn",