Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,21 @@
|
|
1 |
import streamlit as st
|
2 |
from pyannote.audio import Pipeline
|
3 |
-
import whisper
|
4 |
import tempfile
|
5 |
import os
|
6 |
import torch
|
7 |
from transformers import pipeline as tf_pipeline
|
8 |
|
9 |
-
# Cache the model loading using streamlit
|
10 |
@st.cache_resource
|
11 |
def load_models():
|
12 |
try:
|
13 |
-
# Load diarization model efficiently
|
14 |
diarization = Pipeline.from_pretrained(
|
15 |
"pyannote/speaker-diarization",
|
16 |
use_auth_token=st.secrets["hf_token"]
|
17 |
)
|
18 |
|
19 |
-
|
20 |
-
transcriber = whisper.load_model("base")
|
21 |
|
22 |
-
# Load efficient summarizer
|
23 |
summarizer = tf_pipeline(
|
24 |
"summarization",
|
25 |
model="facebook/bart-large-cnn",
|
|
|
1 |
import streamlit as st
|
2 |
from pyannote.audio import Pipeline
|
3 |
+
from openai import whisper # Changed import
|
4 |
import tempfile
|
5 |
import os
|
6 |
import torch
|
7 |
from transformers import pipeline as tf_pipeline
|
8 |
|
|
|
9 |
@st.cache_resource
|
10 |
def load_models():
|
11 |
try:
|
|
|
12 |
diarization = Pipeline.from_pretrained(
|
13 |
"pyannote/speaker-diarization",
|
14 |
use_auth_token=st.secrets["hf_token"]
|
15 |
)
|
16 |
|
17 |
+
transcriber = whisper.load_model("base") # This should work now
|
|
|
18 |
|
|
|
19 |
summarizer = tf_pipeline(
|
20 |
"summarization",
|
21 |
model="facebook/bart-large-cnn",
|