Manyue-DataScientist's picture
Update app.py
caa4c85 verified
raw
history blame
4.68 kB
import streamlit as st
from pyannote.audio import Pipeline
import whisper
import tempfile
import os
import torch
from transformers import pipeline as tf_pipeline
from pydub import AudioSegment
import io
@st.cache_resource
def load_models():
try:
diarization = Pipeline.from_pretrained(
"pyannote/speaker-diarization",
use_auth_token=st.secrets["hf_token"]
)
transcriber = whisper.load_model("base") # Changed from turbo to base as it's more stable
summarizer = tf_pipeline(
"summarization",
model="facebook/bart-large-cnn",
device=0 if torch.cuda.is_available() else -1
)
return diarization, transcriber, summarizer
except Exception as e:
st.error(f"Error loading models: {str(e)}")
return None, None, None
def process_audio(audio_file, max_duration=600): # limit to 5 minutes initially
try:
# First, read the uploaded file into BytesIO
audio_bytes = io.BytesIO(audio_file.getvalue())
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
try:
# Convert audio to standard format
if audio_file.name.lower().endswith('.mp3'):
audio = AudioSegment.from_mp3(audio_bytes)
else:
audio = AudioSegment.from_wav(audio_bytes)
# Standardize audio format
audio = audio.set_frame_rate(16000) # Set sample rate to 16kHz
audio = audio.set_channels(1) # Convert to mono
audio = audio.set_sample_width(2) # Set to 16-bit
# Export with specific parameters
audio.export(
tmp.name,
format="wav",
parameters=["-ac", "1", "-ar", "16000"]
)
tmp_path = tmp.name
except Exception as e:
st.error(f"Error converting audio: {str(e)}")
return None
# Get cached models
diarization, transcriber, summarizer = load_models()
if not all([diarization, transcriber, summarizer]):
return "Model loading failed"
# Process with progress bar
with st.spinner("Identifying speakers..."):
diarization_result = diarization(tmp_path)
with st.spinner("Transcribing audio..."):
transcription = transcriber.transcribe(tmp_path)
with st.spinner("Generating summary..."):
summary = summarizer(transcription["text"], max_length=130, min_length=30)
# Cleanup
os.unlink(tmp_path)
return {
"diarization": diarization_result,
"transcription": transcription["text"],
"summary": summary[0]["summary_text"]
}
except Exception as e:
st.error(f"Error processing audio: {str(e)}")
return None
def main():
st.title("Multi-Speaker Audio Analyzer")
st.write("Upload an audio file (MP3/WAV) up to 5 minutes long for best performance")
uploaded_file = st.file_uploader("Choose a file", type=["mp3", "wav"])
if uploaded_file:
# Display file info
file_size = len(uploaded_file.getvalue()) / (1024 * 1024) # Convert to MB
st.write(f"File size: {file_size:.2f} MB")
# Display audio player
st.audio(uploaded_file, format='audio/wav')
if st.button("Analyze Audio"):
if file_size > 200:
st.error("File size exceeds 200MB limit")
else:
results = process_audio(uploaded_file)
if results:
# Display results in tabs
tab1, tab2, tab3 = st.tabs(["Speakers", "Transcription", "Summary"])
with tab1:
st.write("Speaker Segments:")
for turn, _, speaker in results["diarization"].itertracks(yield_label=True):
st.write(f"{speaker}: {turn.start:.1f}s β†’ {turn.end:.1f}s")
with tab2:
st.write("Transcription:")
st.write(results["transcription"])
with tab3:
st.write("Summary:")
st.write(results["summary"])
if __name__ == "__main__":
main()