Manyue-DataScientist's picture
Update app.py
965e524 verified
raw
history blame
7.5 kB
import streamlit as st
from pyannote.audio import Pipeline
import whisper
import tempfile
import os
import torch
from transformers import pipeline as tf_pipeline
from pydub import AudioSegment
import io
@st.cache_resource
def load_models():
try:
diarization = Pipeline.from_pretrained(
"pyannote/speaker-diarization",
use_auth_token=st.secrets["hf_token"]
)
transcriber = whisper.load_model("base")
summarizer = tf_pipeline(
"summarization",
model="facebook/bart-large-cnn",
device=0 if torch.cuda.is_available() else -1
)
if not diarization or not transcriber or not summarizer:
raise ValueError("One or more models failed to load")
return diarization, transcriber, summarizer
except Exception as e:
st.error(f"Error loading models: {str(e)}")
st.error("Debug info: Check if HF token is valid and has necessary permissions")
return None, None, None
def process_audio(audio_file, max_duration=600):
try:
audio_bytes = io.BytesIO(audio_file.getvalue())
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
try:
if audio_file.name.lower().endswith('.mp3'):
audio = AudioSegment.from_mp3(audio_bytes)
else:
audio = AudioSegment.from_wav(audio_bytes)
# Standardize format
audio = audio.set_frame_rate(16000)
audio = audio.set_channels(1)
audio = audio.set_sample_width(2)
audio.export(
tmp.name,
format="wav",
parameters=["-ac", "1", "-ar", "16000"]
)
tmp_path = tmp.name
except Exception as e:
st.error(f"Error converting audio: {str(e)}")
return None
diarization, transcriber, summarizer = load_models()
if not all([diarization, transcriber, summarizer]):
return "Model loading failed"
with st.spinner("Identifying speakers..."):
diarization_result = diarization(tmp_path)
with st.spinner("Transcribing audio..."):
transcription = transcriber.transcribe(tmp_path)
with st.spinner("Generating summary..."):
summary = summarizer(transcription["text"], max_length=130, min_length=30)
os.unlink(tmp_path)
return {
"diarization": diarization_result,
"transcription": transcription,
"summary": summary[0]["summary_text"]
}
except Exception as e:
st.error(f"Error processing audio: {str(e)}")
return None
def format_speaker_segments(diarization_result, transcription):
if diarization_result is None:
return []
formatted_segments = []
whisper_segments = transcription.get('segments', [])
try:
for turn, _, speaker in diarization_result.itertracks(yield_label=True):
current_text = ""
# Find matching whisper segments for this speaker's time window
for w_segment in whisper_segments:
w_start = float(w_segment['start'])
w_end = float(w_segment['end'])
# If whisper segment overlaps with speaker segment
if (w_start >= turn.start and w_start < turn.end) or \
(w_end > turn.start and w_end <= turn.end):
current_text += w_segment['text'].strip() + " "
formatted_segments.append({
'speaker': str(speaker),
'start': float(turn.start),
'end': float(turn.end),
'text': current_text.strip()
})
except Exception as e:
st.error(f"Error formatting segments: {str(e)}")
return []
return formatted_segments
def format_timestamp(seconds):
minutes = int(seconds // 60)
seconds = seconds % 60
return f"{minutes:02d}:{seconds:05.2f}"
def main():
st.title("Multi-Speaker Audio Analyzer")
st.write("Upload an audio file (MP3/WAV) up to 5 minutes long for best performance")
uploaded_file = st.file_uploader("Choose a file", type=["mp3", "wav"])
if uploaded_file:
file_size = len(uploaded_file.getvalue()) / (1024 * 1024)
st.write(f"File size: {file_size:.2f} MB")
st.audio(uploaded_file, format='audio/wav')
if st.button("Analyze Audio"):
if file_size > 200:
st.error("File size exceeds 200MB limit")
else:
results = process_audio(uploaded_file)
if results:
tab1, tab2, tab3 = st.tabs(["Speakers", "Transcription", "Summary"])
with tab1:
st.write("Speaker Timeline:")
segments = format_speaker_segments(
results["diarization"],
results["transcription"]
)
if segments:
for segment in segments:
col1, col2, col3 = st.columns([2,3,5])
with col1:
speaker_num = int(segment['speaker'].split('_')[1])
colors = ['πŸ”΅', 'πŸ”΄']
speaker_color = colors[speaker_num % len(colors)]
st.write(f"{speaker_color} {segment['speaker']}")
with col2:
start_time = format_timestamp(segment['start'])
end_time = format_timestamp(segment['end'])
st.write(f"{start_time} β†’ {end_time}")
with col3:
if segment['text']:
st.write(f"\"{segment['text']}\"")
else:
st.write("(no speech detected)")
st.markdown("---")
else:
st.warning("No speaker segments detected")
with tab2:
st.write("Transcription:")
if "text" in results["transcription"]:
st.write(results["transcription"]["text"])
else:
st.warning("No transcription available")
with tab3:
st.write("Summary:")
if results["summary"]:
st.write(results["summary"])
else:
st.warning("No summary available")
if __name__ == "__main__":
main()