File size: 7,301 Bytes
2a6784d caa4c85 b3635dd 853df82 caa4c85 2a6784d b3635dd caa4c85 b3635dd caa4c85 b3635dd 2a6784d f1a85dc b3635dd caa4c85 853df82 b3635dd caa4c85 2a6784d caa4c85 2a6784d caa4c85 b3635dd caa4c85 2a6784d caa4c85 b3635dd 2a6784d e0d61c7 b3635dd 2a6784d b3635dd 2a6784d b3635dd caa4c85 e0d61c7 caa4c85 b3635dd caa4c85 b3635dd caa4c85 e0d61c7 caa4c85 e0d61c7 caa4c85 2a6784d b3635dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import streamlit as st
from pyannote.audio import Pipeline
import whisper
import tempfile
import os
import torch
from transformers import pipeline as tf_pipeline
from pydub import AudioSegment
import io
@st.cache_resource
def load_models():
try:
diarization = Pipeline.from_pretrained(
"pyannote/speaker-diarization",
use_auth_token=st.secrets["hf_token"]
)
transcriber = whisper.load_model("base") # Changed from turbo to base as it's more stable
summarizer = tf_pipeline(
"summarization",
model="facebook/bart-large-cnn",
device=0 if torch.cuda.is_available() else -1
)
return diarization, transcriber, summarizer
except Exception as e:
st.error(f"Error loading models: {str(e)}")
return None, None, None
def process_audio(audio_file, max_duration=600): # limit to 5 minutes initially
try:
# First, read the uploaded file into BytesIO
audio_bytes = io.BytesIO(audio_file.getvalue())
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
try:
# Convert audio to standard format
if audio_file.name.lower().endswith('.mp3'):
audio = AudioSegment.from_mp3(audio_bytes)
else:
audio = AudioSegment.from_wav(audio_bytes)
# Standardize audio format
audio = audio.set_frame_rate(16000) # Set sample rate to 16kHz
audio = audio.set_channels(1) # Convert to mono
audio = audio.set_sample_width(2) # Set to 16-bit
# Export with specific parameters
audio.export(
tmp.name,
format="wav",
parameters=["-ac", "1", "-ar", "16000"]
)
tmp_path = tmp.name
except Exception as e:
st.error(f"Error converting audio: {str(e)}")
return None
# Get cached models
diarization, transcriber, summarizer = load_models()
if not all([diarization, transcriber, summarizer]):
return "Model loading failed"
# Process with progress bar
with st.spinner("Identifying speakers..."):
diarization_result = diarization(tmp_path)
with st.spinner("Transcribing audio..."):
transcription = transcriber.transcribe(tmp_path)
with st.spinner("Generating summary..."):
summary = summarizer(transcription["text"], max_length=130, min_length=30)
# Cleanup
os.unlink(tmp_path)
return {
"diarization": diarization_result,
"transcription": transcription["text"],
"summary": summary[0]["summary_text"]
}
except Exception as e:
st.error(f"Error processing audio: {str(e)}")
return None
def format_speaker_segments(diarization_result):
"""Process and format speaker segments by removing very short segments and merging consecutive ones"""
formatted_segments = []
min_duration = 0.3 # Minimum duration threshold in seconds
for turn, _, speaker in diarization_result.itertracks(yield_label=True):
duration = turn.end - turn.start
# Skip very short segments
if duration < min_duration:
continue
# Add segment if it's the first one or from a different speaker
if not formatted_segments or formatted_segments[-1]['speaker'] != speaker:
formatted_segments.append({
'speaker': speaker,
'start': turn.start,
'end': turn.end
})
# Extend the end time if it's the same speaker
else:
formatted_segments[-1]['end'] = turn.end
return formatted_segments
def main():
st.title("Multi-Speaker Audio Analyzer")
st.write("Upload an audio file (MP3/WAV) up to 5 minutes long for best performance")
uploaded_file = st.file_uploader("Choose a file", type=["mp3", "wav"])
if uploaded_file:
# Display file info
file_size = len(uploaded_file.getvalue()) / (1024 * 1024)
st.write(f"File size: {file_size:.2f} MB")
# Display audio player
st.audio(uploaded_file, format='audio/wav')
if st.button("Analyze Audio"):
if file_size > 200:
st.error("File size exceeds 200MB limit")
else:
results = process_audio(uploaded_file)
if results:
tab1, tab2, tab3 = st.tabs(["Speakers", "Transcription", "Summary"])
with tab1:
st.write("Speaker Timeline:")
# Process speaker segments
segments = format_speaker_segments(results["diarization"])
# Display segments in a more organized way
for segment in segments:
# Create columns for better layout
col1, col2, col3 = st.columns([2,1,6])
with col1:
# Show speaker with consistent color
speaker_num = int(segment['speaker'].split('_')[1])
colors = ['π΅', 'π΄', 'π’', 'π‘', 'π£'] # Different colors for different speakers
speaker_color = colors[speaker_num % len(colors)]
st.write(f"{speaker_color} {segment['speaker']}")
with col2:
# Format time more cleanly
start_time = f"{int(segment['start']):02d}:{(segment['start']%60):04.1f}"
end_time = f"{int(segment['end']):02d}:{(segment['end']%60):04.1f}"
st.write(f"{start_time} β")
with col3:
st.write(f"{end_time}")
# Add a small separator
st.markdown("---")
# Add legend
st.write("\nSpeaker Legend:")
for i in range(len(set(s['speaker'] for s in segments))):
st.write(f"{colors[i]} SPEAKER_{i:02d}")
# Keep original transcription and summary tabs
with tab2:
st.write("Transcription:")
st.write(results["transcription"])
with tab3:
st.write("Summary:")
st.write(results["summary"])
if __name__ == "__main__":
main() |