File size: 5,545 Bytes
2a6784d caa4c85 b3635dd 853df82 caa4c85 2a6784d b3635dd da59af0 b3635dd 83bc687 935113b 83bc687 935113b b3635dd caa4c85 b3635dd 2a6784d 935113b b3635dd caa4c85 853df82 b3635dd caa4c85 935113b caa4c85 2a6784d caa4c85 2a6784d caa4c85 b3635dd caa4c85 2a6784d caa4c85 83bc687 caa4c85 b3635dd 2a6784d 83bc687 e0d61c7 83bc687 e0d61c7 83bc687 e0d61c7 83bc687 b3635dd 2a6784d b3635dd 2a6784d b3635dd e0d61c7 caa4c85 b3635dd caa4c85 b3635dd caa4c85 e0d61c7 83bc687 e0d61c7 935113b e0d61c7 83bc687 e0d61c7 83bc687 e0d61c7 caa4c85 935113b caa4c85 2a6784d b3635dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import streamlit as st
from pyannote.audio import Pipeline
import whisper
import tempfile
import os
import torch
from transformers import pipeline as tf_pipeline
from pydub import AudioSegment
import io
@st.cache_resource
def load_models():
try:
diarization = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=st.secrets["hf_token"]
)
transcriber = whisper.load_model("small")
summarizer = tf_pipeline(
"summarization",
model="facebook/bart-large-cnn",
device=0 if torch.cuda.is_available() else -1
)
return diarization, transcriber, summarizer
except Exception as e:
st.error(f"Error loading models: {str(e)}")
return None, None, None
def process_audio(audio_file, max_duration=600):
try:
audio_bytes = io.BytesIO(audio_file.getvalue())
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
try:
if audio_file.name.lower().endswith('.mp3'):
audio = AudioSegment.from_mp3(audio_bytes)
else:
audio = AudioSegment.from_wav(audio_bytes)
# Standardize format
audio = audio.set_frame_rate(16000)
audio = audio.set_channels(1)
audio = audio.set_sample_width(2)
audio.export(
tmp.name,
format="wav",
parameters=["-ac", "1", "-ar", "16000"]
)
tmp_path = tmp.name
except Exception as e:
st.error(f"Error converting audio: {str(e)}")
return None
diarization, transcriber, summarizer = load_models()
if not all([diarization, transcriber, summarizer]):
return "Model loading failed"
with st.spinner("Identifying speakers..."):
diarization_result = diarization(tmp_path)
with st.spinner("Transcribing audio..."):
transcription = transcriber.transcribe(tmp_path)
with st.spinner("Generating summary..."):
summary = summarizer(transcription["text"], max_length=130, min_length=30)
os.unlink(tmp_path)
return {
"diarization": diarization_result,
"transcription": transcription,
"summary": summary[0]["summary_text"]
}
except Exception as e:
st.error(f"Error processing audio: {str(e)}")
return None
def format_speaker_segments(diarization_result):
formatted_segments = []
for turn, _, speaker in diarization_result.itertracks(yield_label=True):
if turn.start is not None and turn.end is not None:
formatted_segments.append({
'speaker': speaker,
'start': float(turn.start),
'end': float(turn.end)
})
return formatted_segments
def format_timestamp(seconds):
minutes = int(seconds // 60)
seconds = seconds % 60
return f"{minutes:02d}:{seconds:05.2f}"
def main():
st.title("Multi-Speaker Audio Analyzer")
st.write("Upload an audio file (MP3/WAV) up to 5 minutes long for best performance")
uploaded_file = st.file_uploader("Choose a file", type=["mp3", "wav"])
if uploaded_file:
file_size = len(uploaded_file.getvalue()) / (1024 * 1024)
st.write(f"File size: {file_size:.2f} MB")
st.audio(uploaded_file, format='audio/wav')
if st.button("Analyze Audio"):
if file_size > 200:
st.error("File size exceeds 200MB limit")
else:
results = process_audio(uploaded_file)
if results:
tab1, tab2, tab3 = st.tabs(["Speakers", "Transcription", "Summary"])
with tab1:
st.write("Speaker Timeline:")
segments = format_speaker_segments(results["diarization"])
for segment in segments:
col1, col2 = st.columns([2,8])
with col1:
speaker_num = int(segment['speaker'].split('_')[1])
colors = ['π΅', 'π΄'] # Two colors for alternating speakers
speaker_color = colors[speaker_num % len(colors)]
st.write(f"{speaker_color} {segment['speaker']}")
with col2:
start_time = format_timestamp(segment['start'])
end_time = format_timestamp(segment['end'])
st.write(f"{start_time} β {end_time}")
st.markdown("---")
with tab2:
st.write("Transcription:")
st.write(results["transcription"]["text"])
with tab3:
st.write("Summary:")
st.write(results["summary"])
if __name__ == "__main__":
main() |