""" Summarization Model Handler Manages the BART model for text summarization. """ from transformers import pipeline import torch import streamlit as st class Summarizer: def __init__(self, model_path='bart_ami_finetuned.pkl'): self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-base') with open(model_path, 'rb') as f: self.model = pickle.load(f) def process(self, text): inputs = self.tokenizer(text, return_tensors="pt", max_length=1024, truncation=True) summary_ids = self.model.generate(inputs["input_ids"], max_length=150, min_length=40) return self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) def process_audio(audio_file): """Process text for summarization. Args: text (str): Text to summarize max_length (int): Maximum length of summary min_length (int): Minimum length of summary Returns: str: Summarized text """ try: text = transcriber.process(audio_file) summary = summarizer.process(text) return { "transcription": text, "summary": summary } except Exception as e: st.error(f"Error: {str(e)}") return None