from transformers import BartTokenizer import torch import streamlit as st import pickle class Summarizer: def __init__(self): self.model = None self.tokenizer = None def load_model(self): try: self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-base') with open('bart_ami_finetuned.pkl', 'rb') as f: self.model = pickle.load(f) return self.model except Exception as e: st.error(f"Error loading summarization model: {str(e)}") return None def process(self, text: str, max_length: int = 130, min_length: int = 30): try: inputs = self.tokenizer(text, return_tensors="pt", max_length=1024, truncation=True) summary_ids = self.model.generate(inputs["input_ids"], max_length=max_length, min_length=min_length) return self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) except Exception as e: st.error(f"Error in summarization: {str(e)}") return None