Update app.py
Browse files
app.py
CHANGED
|
@@ -10,186 +10,185 @@ import io
|
|
| 10 |
|
| 11 |
@st.cache_resource
|
| 12 |
def load_models():
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
|
| 36 |
def process_audio(audio_file, max_duration=600):
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
|
| 87 |
def format_speaker_segments(diarization_result, transcription):
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
cleaned_segments = []
|
| 120 |
-
for i, segment in enumerate(formatted_segments):
|
| 121 |
-
# Skip if this segment overlaps with previous one
|
| 122 |
-
if i > 0 and segment['start'] < cleaned_segments[-1]['end']:
|
| 123 |
-
continue
|
| 124 |
-
cleaned_segments.append(segment)
|
| 125 |
-
|
| 126 |
-
return cleaned_segments
|
| 127 |
|
| 128 |
def format_timestamp(seconds):
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
|
| 133 |
def main():
|
| 134 |
-
|
| 135 |
-
|
| 136 |
|
| 137 |
-
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
if __name__ == "__main__":
|
| 195 |
-
|
|
|
|
| 10 |
|
| 11 |
@st.cache_resource
|
| 12 |
def load_models():
|
| 13 |
+
try:
|
| 14 |
+
diarization = Pipeline.from_pretrained(
|
| 15 |
+
"pyannote/speaker-diarization",
|
| 16 |
+
use_auth_token=st.secrets["hf_token"]
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
transcriber = whisper.load_model("base")
|
| 20 |
+
|
| 21 |
+
summarizer = tf_pipeline(
|
| 22 |
+
"summarization",
|
| 23 |
+
model="facebook/bart-large-cnn",
|
| 24 |
+
device=0 if torch.cuda.is_available() else -1
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
if not diarization or not transcriber or not summarizer:
|
| 28 |
+
raise ValueError("One or more models failed to load")
|
| 29 |
+
|
| 30 |
+
return diarization, transcriber, summarizer
|
| 31 |
+
except Exception as e:
|
| 32 |
+
st.error(f"Error loading models: {str(e)}")
|
| 33 |
+
st.error("Debug info: Check if HF token is valid and has necessary permissions")
|
| 34 |
+
return None, None, None
|
| 35 |
|
| 36 |
def process_audio(audio_file, max_duration=600):
|
| 37 |
+
try:
|
| 38 |
+
audio_bytes = io.BytesIO(audio_file.getvalue())
|
| 39 |
+
|
| 40 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
| 41 |
+
try:
|
| 42 |
+
if audio_file.name.lower().endswith('.mp3'):
|
| 43 |
+
audio = AudioSegment.from_mp3(audio_bytes)
|
| 44 |
+
else:
|
| 45 |
+
audio = AudioSegment.from_wav(audio_bytes)
|
| 46 |
+
|
| 47 |
+
# Standardize format
|
| 48 |
+
audio = audio.set_frame_rate(16000)
|
| 49 |
+
audio = audio.set_channels(1)
|
| 50 |
+
audio = audio.set_sample_width(2)
|
| 51 |
+
|
| 52 |
+
audio.export(
|
| 53 |
+
tmp.name,
|
| 54 |
+
format="wav",
|
| 55 |
+
parameters=["-ac", "1", "-ar", "16000"]
|
| 56 |
+
)
|
| 57 |
+
tmp_path = tmp.name
|
| 58 |
+
|
| 59 |
+
except Exception as e:
|
| 60 |
+
st.error(f"Error converting audio: {str(e)}")
|
| 61 |
+
return None
|
| 62 |
|
| 63 |
+
diarization, transcriber, summarizer = load_models()
|
| 64 |
+
if not all([diarization, transcriber, summarizer]):
|
| 65 |
+
return "Model loading failed"
|
| 66 |
|
| 67 |
+
with st.spinner("Identifying speakers..."):
|
| 68 |
+
diarization_result = diarization(tmp_path)
|
| 69 |
+
|
| 70 |
+
with st.spinner("Transcribing audio..."):
|
| 71 |
+
transcription = transcriber.transcribe(tmp_path)
|
| 72 |
+
|
| 73 |
+
with st.spinner("Generating summary..."):
|
| 74 |
+
summary = summarizer(transcription["text"], max_length=130, min_length=30)
|
| 75 |
|
| 76 |
+
os.unlink(tmp_path)
|
| 77 |
+
|
| 78 |
+
return {
|
| 79 |
+
"diarization": diarization_result,
|
| 80 |
+
"transcription": transcription,
|
| 81 |
+
"summary": summary[0]["summary_text"]
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
st.error(f"Error processing audio: {str(e)}")
|
| 86 |
+
return None
|
| 87 |
|
| 88 |
def format_speaker_segments(diarization_result, transcription):
|
| 89 |
+
if diarization_result is None:
|
| 90 |
+
return []
|
| 91 |
+
|
| 92 |
+
formatted_segments = []
|
| 93 |
+
whisper_segments = transcription.get('segments', [])
|
| 94 |
+
|
| 95 |
+
try:
|
| 96 |
+
for turn, _, speaker in diarization_result.itertracks(yield_label=True):
|
| 97 |
+
current_text = ""
|
| 98 |
+
# Find matching whisper segments for this speaker's time window
|
| 99 |
+
for w_segment in whisper_segments:
|
| 100 |
+
w_start = float(w_segment['start'])
|
| 101 |
+
w_end = float(w_segment['end'])
|
| 102 |
+
|
| 103 |
+
# If whisper segment overlaps with speaker segment
|
| 104 |
+
if (w_start >= turn.start and w_start < turn.end) or \
|
| 105 |
+
(w_end > turn.start and w_end <= turn.end):
|
| 106 |
+
current_text += w_segment['text'].strip() + " "
|
| 107 |
+
|
| 108 |
+
formatted_segments.append({
|
| 109 |
+
'speaker': str(speaker),
|
| 110 |
+
'start': float(turn.start),
|
| 111 |
+
'end': float(turn.end),
|
| 112 |
+
'text': current_text.strip()
|
| 113 |
+
})
|
| 114 |
+
|
| 115 |
+
except Exception as e:
|
| 116 |
+
st.error(f"Error formatting segments: {str(e)}")
|
| 117 |
+
return []
|
| 118 |
+
|
| 119 |
+
return formatted_segments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
def format_timestamp(seconds):
|
| 122 |
+
minutes = int(seconds // 60)
|
| 123 |
+
seconds = seconds % 60
|
| 124 |
+
return f"{minutes:02d}:{seconds:05.2f}"
|
| 125 |
|
| 126 |
def main():
|
| 127 |
+
st.title("Multi-Speaker Audio Analyzer")
|
| 128 |
+
st.write("Upload an audio file (MP3/WAV) up to 5 minutes long for best performance")
|
| 129 |
|
| 130 |
+
uploaded_file = st.file_uploader("Choose a file", type=["mp3", "wav"])
|
| 131 |
|
| 132 |
+
if uploaded_file:
|
| 133 |
+
file_size = len(uploaded_file.getvalue()) / (1024 * 1024)
|
| 134 |
+
st.write(f"File size: {file_size:.2f} MB")
|
| 135 |
+
|
| 136 |
+
st.audio(uploaded_file, format='audio/wav')
|
| 137 |
+
|
| 138 |
+
if st.button("Analyze Audio"):
|
| 139 |
+
if file_size > 200:
|
| 140 |
+
st.error("File size exceeds 200MB limit")
|
| 141 |
+
else:
|
| 142 |
+
results = process_audio(uploaded_file)
|
| 143 |
+
|
| 144 |
+
if results:
|
| 145 |
+
tab1, tab2, tab3 = st.tabs(["Speakers", "Transcription", "Summary"])
|
| 146 |
+
|
| 147 |
+
with tab1:
|
| 148 |
+
st.write("Speaker Timeline:")
|
| 149 |
+
segments = format_speaker_segments(
|
| 150 |
+
results["diarization"],
|
| 151 |
+
results["transcription"]
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
if segments:
|
| 155 |
+
for segment in segments:
|
| 156 |
+
col1, col2, col3 = st.columns([2,3,5])
|
| 157 |
+
|
| 158 |
+
with col1:
|
| 159 |
+
speaker_num = int(segment['speaker'].split('_')[1])
|
| 160 |
+
colors = ['🔵', '🔴']
|
| 161 |
+
speaker_color = colors[speaker_num % len(colors)]
|
| 162 |
+
st.write(f"{speaker_color} {segment['speaker']}")
|
| 163 |
+
|
| 164 |
+
with col2:
|
| 165 |
+
start_time = format_timestamp(segment['start'])
|
| 166 |
+
end_time = format_timestamp(segment['end'])
|
| 167 |
+
st.write(f"{start_time} → {end_time}")
|
| 168 |
+
|
| 169 |
+
with col3:
|
| 170 |
+
if segment['text']:
|
| 171 |
+
st.write(f"\"{segment['text']}\"")
|
| 172 |
+
else:
|
| 173 |
+
st.write("(no speech detected)")
|
| 174 |
+
|
| 175 |
+
st.markdown("---")
|
| 176 |
+
else:
|
| 177 |
+
st.warning("No speaker segments detected")
|
| 178 |
+
|
| 179 |
+
with tab2:
|
| 180 |
+
st.write("Transcription:")
|
| 181 |
+
if "text" in results["transcription"]:
|
| 182 |
+
st.write(results["transcription"]["text"])
|
| 183 |
+
else:
|
| 184 |
+
st.warning("No transcription available")
|
| 185 |
+
|
| 186 |
+
with tab3:
|
| 187 |
+
st.write("Summary:")
|
| 188 |
+
if results["summary"]:
|
| 189 |
+
st.write(results["summary"])
|
| 190 |
+
else:
|
| 191 |
+
st.warning("No summary available")
|
| 192 |
|
| 193 |
if __name__ == "__main__":
|
| 194 |
+
main()
|