Manyue-DataScientist commited on
Commit
2a6784d
·
verified ·
1 Parent(s): 2e8e711

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -0
app.py CHANGED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from pyannote.audio import Pipeline
3
+ from transformers import pipeline
4
+ import whisper
5
+
6
+ # Title
7
+ st.title("Multi-Speaker Audio Analyzer")
8
+
9
+ # Upload Audio File
10
+ uploaded_file = st.file_uploader("Upload an audio file (MP3/WAV)", type=["mp3", "wav"])
11
+
12
+ # Process Button
13
+ if uploaded_file:
14
+ st.audio(uploaded_file, format='audio/wav')
15
+
16
+ # Load pre-trained models
17
+ diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization")
18
+ transcription_model = whisper.load_model("base")
19
+ summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
20
+
21
+ # Perform Speaker Diarization
22
+ st.write("Processing Speaker Diarization...")
23
+ diarized_output = diarization_pipeline(uploaded_file)
24
+
25
+ # Perform Speech-to-Text Transcription
26
+ st.write("Transcribing Audio...")
27
+ transcription = transcription_model.transcribe(uploaded_file)
28
+
29
+ # Generate Summary
30
+ st.write("Generating Summary...")
31
+ summary = summarizer(transcription["text"])
32
+
33
+ # Display Outputs
34
+ st.write("Speaker-Diarized Transcript:")
35
+ st.text(diarized_output)
36
+
37
+ st.write("Full Transcription:")
38
+ st.text(transcription["text"])
39
+
40
+ st.write("Summary:")
41
+ st.text(summary[0]['summary_text'])