Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from pyannote.audio import Pipeline
|
3 |
+
from transformers import pipeline
|
4 |
+
import whisper
|
5 |
+
|
6 |
+
# Title
|
7 |
+
st.title("Multi-Speaker Audio Analyzer")
|
8 |
+
|
9 |
+
# Upload Audio File
|
10 |
+
uploaded_file = st.file_uploader("Upload an audio file (MP3/WAV)", type=["mp3", "wav"])
|
11 |
+
|
12 |
+
# Process Button
|
13 |
+
if uploaded_file:
|
14 |
+
st.audio(uploaded_file, format='audio/wav')
|
15 |
+
|
16 |
+
# Load pre-trained models
|
17 |
+
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization")
|
18 |
+
transcription_model = whisper.load_model("base")
|
19 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
20 |
+
|
21 |
+
# Perform Speaker Diarization
|
22 |
+
st.write("Processing Speaker Diarization...")
|
23 |
+
diarized_output = diarization_pipeline(uploaded_file)
|
24 |
+
|
25 |
+
# Perform Speech-to-Text Transcription
|
26 |
+
st.write("Transcribing Audio...")
|
27 |
+
transcription = transcription_model.transcribe(uploaded_file)
|
28 |
+
|
29 |
+
# Generate Summary
|
30 |
+
st.write("Generating Summary...")
|
31 |
+
summary = summarizer(transcription["text"])
|
32 |
+
|
33 |
+
# Display Outputs
|
34 |
+
st.write("Speaker-Diarized Transcript:")
|
35 |
+
st.text(diarized_output)
|
36 |
+
|
37 |
+
st.write("Full Transcription:")
|
38 |
+
st.text(transcription["text"])
|
39 |
+
|
40 |
+
st.write("Summary:")
|
41 |
+
st.text(summary[0]['summary_text'])
|