Manyue-DataScientist's picture
Update src/models/summarization.py
3befa67 verified
raw
history blame
2.3 kB
"""
Summarization Model Handler
Manages the fine-tuned BART model for text summarization.
"""
from transformers import BartTokenizer, BartForConditionalGeneration
import torch
import streamlit as st
class Summarizer:
def __init__(self):
"""Initialize the summarization model."""
self.model = None
self.tokenizer = None
def load_model(self):
"""Load the fine-tuned BART summarization model."""
try:
with open('bart_ami_finetuned.pkl','rb') as f:
self.model = pickle.load(f)
# Load the tokenizer
self.tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
# Move model to appropriate device (GPU if available)
self.model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
return self.model
except Exception as e:
st.error(f"Error loading fine-tuned summarization model: {str(e)}")
return None
def process(self, text: str, max_length: int = 130, min_length: int = 30):
"""Process text for summarization.
Args:
text (str): Text to summarize
max_length (int): Maximum length of summary
min_length (int): Minimum length of summary
Returns:
str: Summarized text
"""
try:
# Tokenize input text
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=1024, padding="max_length")
# Move inputs to the same device as the model
inputs = {key: value.to(self.model.device) for key, value in inputs.items()}
# Generate summary
summary_ids = self.model.generate(
inputs["input_ids"],
max_length=max_length,
min_length=min_length,
num_beams=4, # Beam search for better quality
early_stopping=True
)
# Decode summary tokens to text
summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
except Exception as e:
st.error(f"Error in summarization: {str(e)}")
return None