|
""" |
|
Summarization Model Handler |
|
Manages the fine-tuned BART model for text summarization. |
|
""" |
|
|
|
from transformers import BartTokenizer, BartForConditionalGeneration |
|
import torch |
|
import streamlit as st |
|
|
|
class Summarizer: |
|
def __init__(self): |
|
"""Initialize the summarization model.""" |
|
self.model = None |
|
self.tokenizer = None |
|
|
|
def load_model(self): |
|
"""Load the fine-tuned BART summarization model.""" |
|
try: |
|
with open('bart_ami_finetuned.pkl','rb') as f: |
|
self.model = pickle.load(f) |
|
|
|
self.tokenizer = BartTokenizer.from_pretrained("facebook/bart-base") |
|
|
|
|
|
self.model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')) |
|
return self.model |
|
except Exception as e: |
|
st.error(f"Error loading fine-tuned summarization model: {str(e)}") |
|
return None |
|
|
|
def process(self, text: str, max_length: int = 130, min_length: int = 30): |
|
"""Process text for summarization. |
|
|
|
Args: |
|
text (str): Text to summarize |
|
max_length (int): Maximum length of summary |
|
min_length (int): Minimum length of summary |
|
|
|
Returns: |
|
str: Summarized text |
|
""" |
|
try: |
|
|
|
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=1024, padding="max_length") |
|
|
|
|
|
inputs = {key: value.to(self.model.device) for key, value in inputs.items()} |
|
|
|
|
|
summary_ids = self.model.generate( |
|
inputs["input_ids"], |
|
max_length=max_length, |
|
min_length=min_length, |
|
num_beams=4, |
|
early_stopping=True |
|
) |
|
|
|
|
|
summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
return summary |
|
except Exception as e: |
|
st.error(f"Error in summarization: {str(e)}") |
|
return None |
|
|