|
""" |
|
Summarization Model Handler |
|
Manages the fine-tuned BART model for text summarization. |
|
""" |
|
|
|
from transformers import BartTokenizer, BartForConditionalGeneration |
|
import torch |
|
import streamlit as st |
|
|
|
class Summarizer: |
|
def __init__(self): |
|
self.model = None |
|
self.tokenizer = None |
|
|
|
def load_model(self): |
|
try: |
|
self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-base') |
|
self.model = torch.load('bart_ami_finetuned.pkl') |
|
self.model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')) |
|
return self.model |
|
except Exception as e: |
|
st.error(f"Error loading summarization model: {str(e)}") |
|
return None |
|
|
|
def process(self, text: str, max_length: int = 150, min_length: int = 40): |
|
try: |
|
inputs = self.tokenizer(text, return_tensors="pt", max_length=1024, truncation=True) |
|
inputs = {key: value.to(self.model.device) for key, value in inputs.items()} |
|
summary_ids = self.model.generate( |
|
inputs["input_ids"], |
|
max_length=max_length, |
|
min_length=min_length, |
|
num_beams=4, |
|
length_penalty=2.0 |
|
) |
|
summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
|
|
return [{"summary_text": summary}] |
|
except Exception as e: |
|
st.error(f"Error in summarization: {str(e)}") |
|
return None |
|
|