File size: 1,533 Bytes
b1426fb
 
f6e66c5
b1426fb
 
f6e66c5
b1426fb
 
 
 
08d05f4
 
 
b1426fb
08d05f4
 
8998fb8
 
 
08d05f4
 
8998fb8
08d05f4
b1426fb
8998fb8
08d05f4
8998fb8
f6e66c5
08d05f4
 
 
 
8998fb8
 
08d05f4
 
8998fb8
 
08d05f4
 
f6e66c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
"""
Summarization Model Handler
Manages the fine-tuned BART model for text summarization.
"""

from transformers import BartTokenizer, BartForConditionalGeneration
import torch
import streamlit as st

class Summarizer:
    def __init__(self):
        self.model = None
        self.tokenizer = None

    def load_model(self):
        try:
            self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-base')
            self.model = torch.load('bart_ami_finetuned.pkl')
            self.model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
            return self.model
        except Exception as e:
            st.error(f"Error loading summarization model: {str(e)}")
            return None

    def process(self, text: str, max_length: int = 150, min_length: int = 40):
        try:
            inputs = self.tokenizer(text, return_tensors="pt", max_length=1024, truncation=True)
            inputs = {key: value.to(self.model.device) for key, value in inputs.items()}
            summary_ids = self.model.generate(
                inputs["input_ids"],
                max_length=max_length,
                min_length=min_length,
                num_beams=4,
                length_penalty=2.0
            )
            summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True)
            # Return in the expected format
            return [{"summary_text": summary}]
        except Exception as e:
            st.error(f"Error in summarization: {str(e)}")
            return None