File size: 1,292 Bytes
b1426fb
 
 
 
 
 
 
 
 
 
e168ebd
 
 
 
b1426fb
e168ebd
 
 
 
b1426fb
e168ebd
 
b1426fb
 
 
 
 
 
 
 
 
 
e168ebd
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
"""
Summarization Model Handler
Manages the BART model for text summarization.
"""

from transformers import pipeline
import torch
import streamlit as st

class Summarizer:
    def __init__(self, model_path='bart_ami_finetuned.pkl'):
        self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-base')
        with open(model_path, 'rb') as f:
            self.model = pickle.load(f)

    def process(self, text):
        inputs = self.tokenizer(text, return_tensors="pt", max_length=1024, truncation=True)
        summary_ids = self.model.generate(inputs["input_ids"], max_length=150, min_length=40)
        return self.tokenizer.decode(summary_ids[0], skip_special_tokens=True)


def process_audio(audio_file):
        """Process text for summarization.
        
        Args:
            text (str): Text to summarize
            max_length (int): Maximum length of summary
            min_length (int): Minimum length of summary
            
        Returns:
            str: Summarized text
        """
    try:
        text = transcriber.process(audio_file)
        summary = summarizer.process(text)
        return {
            "transcription": text,
            "summary": summary
        }
    except Exception as e:
        st.error(f"Error: {str(e)}")
        return None