File size: 15,629 Bytes
a3cbcca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import gradio as gr
import base64
# --- Helper Functions ---
def file_to_data_uri(filepath, mime_type="application/pdf"):
with open(filepath, "rb") as f:
data = f.read()
b64 = base64.b64encode(data).decode("utf-8")
return f"data:{mime_type};base64,{b64}"
def toggle_resume(is_visible):
new_state = not is_visible
new_label = "Hide Resume" if new_state else "View Resume"
return new_state, gr.update(visible=new_state), gr.update(value=new_label)
# --- CSS ---
portfolio_css = """
/* Import Google font */
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;600;700&display=swap');
body {
font-family: 'Poppins', sans-serif;
background: linear-gradient(to bottom right, #141414, #000);
margin: 0;
padding: 0;
}
.gr-container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
/* Landing Section */
.landing-section {
text-align: center;
margin-bottom: 40px;
}
.landing-section h1, .landing-section h2 {
color: #ffffff !important;
margin-top: 0;
}
.landing-section h1 {
font-size: 2.8rem;
font-weight: 700;
margin-bottom: 0.5rem;
}
.landing-section h2 {
font-size: 2rem;
font-weight: 600;
margin-bottom: 1rem;
}
/* Typewriter effect */
.typing-animation {
display: inline-block;
overflow: hidden;
white-space: nowrap;
border-right: 2px solid #ffffff;
font-size: 2.8rem;
font-weight: 700;
width: 29ch;
animation: typing 4s steps(29, end) infinite alternate, blink-caret 0.75s step-end infinite;
}
@keyframes typing { from { width: 0ch; } to { width: 29ch; } }
@keyframes blink-caret { 50% { border-color: transparent; } }
/* Global text styling */
p, li, span {
color: #e8e8e8;
font-size: 1.2rem;
}
strong {
background-color: #ffffff;
color: #000;
padding: 0.2rem 0.3rem;
border-radius: 3px;
font-weight: bold;
}
/* Card styling */
.card-container {
margin-bottom: 20px;
transition: transform 0.3s ease, box-shadow 0.3s ease;
text-align: center;
}
.card-container:hover {
transform: translateY(-8px);
box-shadow: 0 8px 16px rgba(0,0,0,0.5);
}
.clickable-card { cursor: pointer; }
.card-content {
border-radius: 15px;
padding: 30px;
height: 150px;
display: flex;
align-items: center;
justify-content: center;
font-size: 24px;
color: white;
box-shadow: 0 4px 8px rgba(0,0,0,0.3);
margin-bottom: 10px;
font-weight: 600;
}
/* Card gradients */
.card-da { background: linear-gradient(135deg, #6a11cb, #2575fc); }
.card-ml { background: linear-gradient(135deg, #00c6ff, #0072ff); }
.card-cv { background: linear-gradient(135deg, #f857a6, #ff5858); }
/* Section headings */
.da-section h1.section-heading { color: #6a11cb; }
.ml-section h1.section-heading { color: #0072ff; }
.cv-section h1.section-heading { color: #f857a6; }
/* Back buttons */
.back-button {
border: none;
border-radius: 20px;
padding: 6px 16px;
font-size: 0.85rem;
font-weight: 600;
cursor: pointer;
transition: transform 0.2s ease, box-shadow 0.2s ease;
margin-bottom: 20px;
}
.back-button:hover {
transform: translateY(-3px);
box-shadow: 0 4px 6px rgba(0,0,0,0.2);
}
.back-button-da { background-color: #2575fc; color: #fff; }
.back-button-ml { background-color: #0072ff; color: #fff; }
.back-button-cv { background-color: #ff5858; color: #fff; }
"""
# --- Portfolio Layout ---
with gr.Blocks(title="Manyue's Portfolio", css=portfolio_css) as demo:
# ----- Landing Page -----
with gr.Row(visible=True, elem_classes="landing-section") as landing_section:
with gr.Column():
gr.HTML("""
<div class="typing-animation">Welcome to Manyue's Portfolio</div><br>
<h2>About Me</h2>
<p>
Hi, I'm Manyue Javvadi β a software engineer turned AI/ML practitioner with a strong foundation in <strong>Commerce</strong> and extensive experience in <strong>machine learning, computer vision, and data analytics</strong>.
After gaining valuable industry experience at <strong>Cognizant Technology Solutions</strong>, I pursued formal education in <strong>Applied AI</strong> and <strong>Big Data Analytics</strong> in Canada.
I excel at bridging <strong>business logic</strong> with <strong>innovative technical solutions</strong> to create systems that solve real-world challenges.
</p>
<h2>My Specializations</h2>
""")
with gr.Row():
with gr.Column():
da_card = gr.HTML("""
<div class="card-container clickable-card" onclick="document.getElementById('da_hidden').click()">
<div class="card-content card-da"><span>Data Analytics</span></div>
<p style="font-weight: bold;">Data storytelling, business analysis, and visualization</p>
</div>
""")
da_hidden = gr.Button("", visible=False, elem_id="da_hidden")
with gr.Column():
ml_card = gr.HTML("""
<div class="card-container clickable-card" onclick="document.getElementById('ml_hidden').click()">
<div class="card-content card-ml"><span>Machine Learning</span></div>
<p style="font-weight: bold;">Applied ML for impactful decision-making and automation</p>
</div>
""")
ml_hidden = gr.Button("", visible=False, elem_id="ml_hidden")
with gr.Column():
cv_card = gr.HTML("""
<div class="card-container clickable-card" onclick="document.getElementById('cv_hidden').click()">
<div class="card-content card-cv"><span>Computer Vision</span></div>
<p style="font-weight: bold;">Real-time object detection and accessibility solutions</p>
</div>
""")
cv_hidden = gr.Button("", visible=False, elem_id="cv_hidden")
# ----- Data Analytics Section -----
with gr.Column(visible=False, elem_classes="da-section") as da_section:
gr.Markdown("<h1 class='section-heading' style='margin-bottom: 20px;'>Data Analytics</h1>")
with gr.Tabs():
with gr.TabItem("Resume"):
gr.Markdown("### Professional Summary")
gr.Markdown("""
**Professional Summary**
Detail-oriented Data Analyst with a strategic business mindset and robust technical skills in data manipulation, visualization, and predictive modeling. I transform raw data into clear insights that empower decision-makers.
""")
gr.Markdown("### Intro Video")
gr.Video(value="data/DA_Intro.mp4", label="Data Analytics Intro Video", autoplay=False)
gr.Markdown("### Resume Document Preview")
da_resume_state = gr.State(value=False)
with gr.Group(visible=False) as da_resume_container:
da_pdf = file_to_data_uri("data/DA_Resume.pdf")
gr.HTML(f"""<iframe src="{da_pdf}" width="100%" height="600px" style="border:none;"></iframe>""")
da_toggle_btn = gr.Button("View Resume")
da_toggle_btn.click(fn=toggle_resume, inputs=[da_resume_state], outputs=[da_resume_state, da_resume_container, da_toggle_btn])
with gr.TabItem("Skills"):
gr.Markdown("### Core Skills")
gr.Markdown("""
- **Data Wrangling & Analysis:** Expert in SQL and Python (Pandas, NumPy) for efficient data cleaning and transformation.
- **Exploratory Data Analysis:** Skilled in using Tableau, Matplotlib, and Seaborn to extract and visualize insights.
- **Predictive Modeling:** Proficient in statistical modeling and forecasting to drive informed decision-making.
""")
with gr.TabItem("Projects"):
gr.Markdown("### Selected Projects")
gr.Markdown("""
**LoanTap: Loan Eligibility Prediction**
Leveraged logistic regression and EDA to identify key factors influencing loan approvals.
**Educational Data Insights**
Conducted deep statistical analysis to reveal trends in student performance.
**Upcoming β Jamboree Admission Insights**
An initiative to predict graduate admissions using advanced data techniques.
""")
back_da = gr.Button("β Home", elem_classes=["back-button", "back-button-da"])
# ----- Machine Learning Section -----
with gr.Column(visible=False, elem_classes="ml-section") as ml_section:
gr.Markdown("<h1 class='section-heading' style='margin-bottom: 20px;'>Machine Learning</h1>")
with gr.Tabs():
with gr.TabItem("Resume"):
gr.Markdown("### Professional Summary")
gr.Markdown("""
**Professional Summary**
Passionate Machine Learning Engineer skilled in designing and deploying end-to-end ML solutions. I combine technical rigor with strategic insight to develop models that drive innovation and operational efficiency.
""")
gr.Markdown("### Intro Video")
gr.Markdown("_Intro video is coming soon._")
gr.Markdown("### Resume Document Preview")
ml_resume_state = gr.State(value=False)
with gr.Group(visible=False) as ml_resume_container:
ml_pdf = file_to_data_uri("data/ML_CV_Resume.pdf")
gr.HTML(f"""<iframe src="{ml_pdf}" width="100%" height="600px" style="border:none;"></iframe>""")
ml_toggle_btn = gr.Button("View Resume")
ml_toggle_btn.click(fn=toggle_resume, inputs=[ml_resume_state], outputs=[ml_resume_state, ml_resume_container, ml_toggle_btn])
with gr.TabItem("Skills"):
gr.Markdown("### Core Skills")
gr.Markdown("""
- **ML Algorithms:** Deep understanding of regression, classification, clustering, and neural networks.
- **Frameworks & Libraries:** Proficient with scikit-learn, TensorFlow, and XGBoost.
- **Model Deployment:** Experienced in deploying models with Gradio and Streamlit.
- **Data Engineering:** Skilled in feature engineering and data preprocessing for optimal model performance.
""")
with gr.TabItem("Projects"):
gr.Markdown("### Selected Projects")
gr.Markdown("""
**University Admission Predictor**
Applied linear regression to forecast admission chances based on academic and test performance.
[AI Chat Assistant](https://huggingface.co/spaces/Manyue-DataScientist/AI-Assistant)
Built as a demonstration of a practical AI application, this assistant revolutionizes how recruiters and hiring managers interact with my
portfolio. Unlike traditional chatbots, itβs designed with a unique optimization approach that prioritizes efficiency and accuracy.
[Speaker Diarization Application](https://huggingface.co/spaces/Manyue-DataScientist/speaker-diarization-app-v2)
Developed an advanced multi-speaker audio processing system that performs speaker diarization, transcription, and summarization to
extract meaningful insights from multi-speaker conversations.
""")
back_ml = gr.Button("β Home", elem_classes=["back-button", "back-button-ml"])
# ----- Computer Vision Section -----
with gr.Column(visible=False, elem_classes="cv-section") as cv_section:
gr.Markdown("<h1 class='section-heading' style='margin-bottom: 20px;'>Computer Vision</h1>")
with gr.Tabs():
with gr.TabItem("Resume"):
gr.Markdown("### Professional Summary")
gr.Markdown("""
**Professional Summary**
Innovative Computer Vision Engineer dedicated to crafting real-time, scalable vision solutions. I focus on building systems that improve accessibility and automate complex visual tasks.
""")
gr.Markdown("### Intro Video")
gr.Markdown("_Intro video is coming soon._")
gr.Markdown("### Resume Document Preview")
cv_resume_state = gr.State(value=False)
with gr.Group(visible=False) as cv_resume_container:
cv_pdf = file_to_data_uri("data/ML_CV_Resume.pdf")
gr.HTML(f"""<iframe src="{cv_pdf}" width="100%" height="600px" style="border:none;"></iframe>""")
cv_toggle_btn = gr.Button("View Resume")
cv_toggle_btn.click(fn=toggle_resume, inputs=[cv_resume_state], outputs=[cv_resume_state, cv_resume_container, cv_toggle_btn])
with gr.TabItem("Skills"):
gr.Markdown("### Core Skills")
gr.Markdown("""
- **Vision Algorithms:** Proficient in CNNs, YOLO, and segmentation for robust object detection.
- **Technical Tools:** Expert in OpenCV, PyTorch, and TensorFlow for advanced image processing.
- **Image Analysis:** Skilled in image enhancement, filtering, and OCR integration.
- **Deep Learning:** Experienced with transfer learning and model fine-tuning for custom vision tasks.
""")
with gr.TabItem("Projects"):
gr.Markdown("### Selected Projects")
gr.Markdown("""
**Smart Shopping Assistant**
An accessibility tool combining real-time object detection and OCR to guide visually impaired users in retail settings.
**Traffic Flow Counter (Upcoming)**
An edge solution using Raspberry Pi to monitor and count vehicles at intersections.
**Experimental Object Datasets**
Initiatives focused on training custom YOLO models to improve detection in complex environments.
""")
back_cv = gr.Button("β Home", elem_classes=["back-button", "back-button-cv"])
# ----- Navigation Callbacks -----
def switch_to_da():
return (gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False))
def switch_to_ml():
return (gr.update(visible=False), gr.update(visible=False), gr.update(visible=(True)), gr.update(visible=(False)))
def switch_to_cv():
return (gr.update(visible=False), gr.update(visible=False), gr.update(visible=(False)), gr.update(visible=(True)))
def back_to_main():
return (gr.update(visible=True), gr.update(visible=(False)), gr.update(visible=(False)), gr.update(visible=(False)))
# Hidden card triggers for section switching
da_hidden.click(fn=switch_to_da, outputs=[landing_section, da_section, ml_section, cv_section])
ml_hidden.click(fn=switch_to_ml, outputs=[landing_section, da_section, ml_section, cv_section])
cv_hidden.click(fn=switch_to_cv, outputs=[landing_section, da_section, ml_section, cv_section])
# Back button bindings for each section
back_da.click(fn=back_to_main, outputs=[landing_section, da_section, ml_section, cv_section])
back_ml.click(fn=back_to_main, outputs=[landing_section, da_section, ml_section, cv_section])
back_cv.click(fn=back_to_main, outputs=[landing_section, da_section, ml_section, cv_section])
demo.launch()
|