File size: 42,916 Bytes
e4d89ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
import gradio as gr
import base64
import os

# --- Helper Functions ---
def file_to_data_uri(filepath, mime_type="application/pdf"):
    with open(filepath, "rb") as f:
        data = f.read()
    b64 = base64.b64encode(data).decode("utf-8")
    return f"data:{mime_type};base64,{b64}"


# --- Navigation Functions ---
def show_data_analytics():
    return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)

def show_machine_learning():
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)

def show_computer_vision():
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)

def go_home():
    return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

# --- Icons (SVG) ---
data_analytics_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M21 15a2 2 0 0 1-2 2H7l-4 4V5a2 2 0 0 1 2-2h14a2 2 0 0 1 2 2z"></path><path d="M8 10h.01"></path><path d="M12 10h.01"></path><path d="M16 10h.01"></path></svg>"""
machine_learning_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><polyline points="22 12 18 12 15 21 9 3 6 12 2 12"></polyline></svg>"""
computer_vision_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M23 19a2 2 0 0 1-2 2H3a2 2 0 0 1-2-2V8a2 2 0 0 1 2-2h4l2-3h6l2 3h4a2 2 0 0 1 2 2z"></path><circle cx="12" cy="13" r="4"></circle></svg>"""
home_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M3 9l9-7 9 7v11a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2z"></path><polyline points="9 22 9 12 15 12 15 22"></polyline></svg>"""
linkedin_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M16 8a6 6 0 0 1 6 6v7h-4v-7a2 2 0 0 0-2-2 2 2 0 0 0-2 2v7h-4v-7a6 6 0 0 1 6-6z"></path><rect x="2" y="9" width="4" height="12"></rect><circle cx="4" cy="4" r="2"></circle></svg>"""
github_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M9 19c-5 1.5-5-2.5-7-3m14 6v-3.87a3.37 3.37 0 0 0-.94-2.61c3.14-.35 6.44-1.54 6.44-7A5.44 5.44 0 0 0 20 4.77 5.07 5.07 0 0 0 19.91 1S18.73.65 16 2.48a13.38 13.38 0 0 0-7 0C6.27.65 5.09 1 5.09 1A5.07 5.07 0 0 0 5 4.77a5.44 5.44 0 0 0-1.5 3.78c0 5.42 3.3 6.61 6.44 7A3.37 3.37 0 0 0 9 18.13V22"></path></svg>"""
mail_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M4 4h16c1.1 0 2 .9 2 2v12c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V6c0-1.1.9-2 2-2z"></path><polyline points="22,6 12,13 2,6"></polyline></svg>"""
link_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg>"""
document_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M14 2H6a2 2 0 0 0-2 2v16a2 2 0 0 0 2 2h12a2 2 0 0 0 2-2V8z"></path><polyline points="14 2 14 8 20 8"></polyline><line x1="16" y1="13" x2="8" y2="13"></line><line x1="16" y1="17" x2="8" y2="17"></line><line x1="10" y1="9" x2="8" y2="9"></line></svg>"""

# --- Function to encode image ---
def image_to_data_uri(filepath, mime_type="image/jpeg"):
    with open(filepath, "rb") as f:
        data = f.read()
    b64 = base64.b64encode(data).decode("utf-8")
    return f"data:{mime_type};base64,{b64}"

# --- CSS ---
portfolio_css = """
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;500;600;700&family=Montserrat:wght@700;800&display=swap');

:root {
    --primary-da: #8a2be2;
    --secondary-da: #2575fc;
    --primary-ml: #00b4db;
    --secondary-ml: #0083b0;
    --primary-cv: #ff4d7e;
    --secondary-cv: #fd3e58;
    --dark-bg: #0f1118;
    --card-bg: #1a1d29;
    --text-primary: #ffffff;
    --text-secondary: #e0e0e0;
    --text-muted: #a0a0a0;
    --shadow-sm: 0 4px 6px rgba(0, 0, 0, 0.1);
    --shadow-md: 0 8px 16px rgba(0, 0, 0, 0.2);
    --shadow-lg: 0 12px 24px rgba(0, 0, 0, 0.2);
    --border-radius-sm: 8px;
    --border-radius-md: 12px;
    --border-radius-lg: 20px;
    --transition-fast: 0.2s ease;
    --transition-med: 0.3s ease;
    --transition-slow: 0.5s ease;
}

body {
    font-family: 'Poppins', sans-serif;
    background: var(--dark-bg);
    background-image: 
        radial-gradient(circle at 25% 25%, rgba(53, 53, 113, 0.05) 0%, transparent 50%),
        radial-gradient(circle at 75% 75%, rgba(113, 53, 53, 0.05) 0%, transparent 50%);
    color: var(--text-primary);
    margin: 0;
    padding: 0;
    overflow-x: hidden;
}

.gr-container {
    max-width: 1200px;
    margin: 0 auto;
    padding: 20px;
}

/* Scrollbar styling */
::-webkit-scrollbar {
    width: 8px;
    height: 8px;
}

::-webkit-scrollbar-track {
    background: rgba(255, 255, 255, 0.05);
    border-radius: 4px;
}

::-webkit-scrollbar-thumb {
    background: rgba(255, 255, 255, 0.2);
    border-radius: 4px;
}

::-webkit-scrollbar-thumb:hover {
    background: rgba(255, 255, 255, 0.3);
}

/* Landing section */
.landing-section {
    text-align: center;
    margin-bottom: 60px;
    padding: 40px 20px;
    position: relative;
}

.landing-section:before {
    content: '';
    position: absolute;
    top: 0;
    left: 0;
    right: 0;
    height: 500px;
    background: linear-gradient(180deg, rgba(0,0,0,0.7) 0%, transparent 100%);
    z-index: -1;
}

.landing-section h1, .landing-section h2 {
    color: var(--text-primary) !important;
    margin-top: 0;
}

.landing-section h1 {
    font-family: 'Montserrat', sans-serif;
    font-size: 3.2rem;
    font-weight: 800;
    margin-bottom: 0.5rem;
    background: linear-gradient(90deg, var(--primary-da), var(--primary-ml), var(--primary-cv));
    -webkit-background-clip: text;
    background-clip: text;
    color: transparent !important;
    letter-spacing: -0.5px;
}

.landing-section h2 {
    font-size: 2rem;
    font-weight: 600;
    margin-bottom: 1.5rem;
}

.profile-container {
    margin: 30px auto;
    display: flex;
    align-items: center;
    justify-content: center;
    flex-direction: column;
}

.profile-pic {
    width: 180px;
    height: 180px;
    border-radius: 50%;
    object-fit: cover;
    border: 4px solid rgba(255, 255, 255, 0.2);
    box-shadow: var(--shadow-md);
    margin-bottom: 20px;
    position: relative;
    background: linear-gradient(45deg, var(--primary-da), var(--primary-ml), var(--primary-cv));
    padding: 4px;
}

.profile-pic img {
    border-radius: 50%;
    width: 100%;
    height: 100%;
    object-fit: cover;
}

.name-text {
    font-size: 2.6rem;
    font-weight: 700;
    margin-top: 10px;
    margin-bottom: 10px;
}

@keyframes float {
    0% { transform: translateY(0px) }
    50% { transform: translateY(-10px) }
    100% { transform: translateY(0px) }
}

@keyframes pulse {
    0% { transform: scale(1); }
    50% { transform: scale(1.05); }
    100% { transform: scale(1); }
}

.about-text {
    max-width: 800px;
    margin: 0 auto 40px;
    font-size: 1.25rem;
    line-height: 1.6;
    color: var(--text-secondary);
}

.skills-container {
    margin-top: 20px;
    display: flex;
    flex-wrap: wrap;
    justify-content: center;
    gap: 10px;
    margin-bottom: 40px;
}

.skill-pill {
    background: rgba(255, 255, 255, 0.1);
    padding: 8px 16px;
    border-radius: 30px;
    font-size: 0.9rem;
    font-weight: 500;
    color: var(--text-secondary);
}

.social-links {
    display: flex;
    justify-content: center;
    gap: 20px;
    margin: 30px 0;
}

.social-button {
    background: rgba(255, 255, 255, 0.1);
    border: none;
    border-radius: 50%;
    width: 50px;
    height: 50px;
    display: flex;
    align-items: center;
    justify-content: center;
    transition: all var(--transition-med);
    color: var(--text-primary);
    font-size: 1.2rem;
    box-shadow: var(--shadow-sm);
}

.social-button:hover {
    transform: translateY(-5px);
    background: rgba(255, 255, 255, 0.2);
    box-shadow: var(--shadow-md);
}

.social-linkedin:hover { background: #0077b5; }
.social-github:hover { background: #333; }
.social-email:hover { background: #ea4335; }

.social-button svg {
    width: 24px;
    height: 24px;
}

/* Card styling */
.cards-grid {
    display: grid;
    grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
    gap: 30px;
    margin: 40px 0;
}

.card-container {
    position: relative; /* Important for button positioning */
    margin-bottom: 20px;
    height: 100%;
}

.card-container.da:before {
    content: '';
    position: absolute;
    top: 0;
    left: 0;
    right: 0;
    height: 6px;
    background: linear-gradient(90deg, var(--primary-da), var(--secondary-da));
    z-index: 5;
    border-radius: var(--border-radius-md) var(--border-radius-md) 0 0;
}

.card-container.ml:before {
    content: '';
    position: absolute;
    top: 0;
    left: 0;
    right: 0;
    height: 6px;
    background: linear-gradient(90deg, var(--primary-ml), var(--secondary-ml));
    z-index: 5;
    transition: all var(--transition-med);
    border-radius: var(--border-radius-md) var(--border-radius-md) 0 0;
}

.card-container.cv:before {
    content: '';
    position: absolute;
    top: 0;
    left: 0;
    right: 0;
    height: 6px;
    background: linear-gradient(90deg, var(--primary-cv), var(--secondary-cv));
    z-index: 5;
    border-radius: var(--border-radius-md) var(--border-radius-md) 0 0;
}

.card-content {
    padding: 30px;
    min-height: 200px;
    display: flex;
    flex-direction: column;
    align-items: center;
    justify-content: center;
    font-size: 26px;
    font-weight: 700;
    position: relative;
    z-index: 2;
    transition: all var(--transition-med);
}

.card-content svg {
    width: 60px;
    height: 60px;
    margin-bottom: 20px;
    opacity: 0.9;
    transition: all var(--transition-med);
}

.card-inner {
    transition: transform var(--transition-med), box-shadow var(--transition-med), background-color var(--transition-med);
    text-align: center;
    border-radius: var(--border-radius-md);
    background: var(--card-bg);
    overflow: hidden;
    box-shadow: var(--shadow-md);
    height: 100%;
    cursor: pointer; /* Indicates the card is clickable */
    position: relative; /* Ensure child elements are positioned relative to the card */
}

.card-inner:hover {
    transform: translateY(-10px) scale(1.05); /* Adds a slight zoom effect */
    box-shadow: var(--shadow-lg); /* Increases shadow for emphasis */
    background: rgba(255, 255, 255, 0.1); /* Subtle background change */
    border: 2px solid var(--primary-da); /* Optional: Add a border to emphasize hover */
}

.card-inner:hover .card-content svg {
    transform: scale(1.1); /* Slightly enlarges the icon */
    opacity: 1;
}

.card-inner:hover .card-description {
    color: var(--text-primary); /* Optional: changes text color for emphasis */
}

/* Add a subtle glow effect */
.card-inner:hover:before {
    content: '';
    position: absolute;
    top: 0;
    left: 0;
    right: 0;
    bottom: 0;
    border-radius: var(--border-radius-md);
    box-shadow: 0 0 15px rgba(255, 255, 255, 0.3);
    z-index: -1;
}

.card-description {
    padding: 0 20px 20px;
    color: var(--text-secondary);
    font-size: 1.1rem;
    line-height: 1.5;
}

/* Card button styling - crucial for making cards clickable */
.card-button {
    position: absolute !important;
    top: 0 !important;
    left: 0 !important;
    width: 100% !important;
    height: 100% !important;
    opacity: 0 !important;
    z-index: 10 !important;
    cursor: pointer !important;
    margin: 0 !important;
    padding: 0 !important;
    border: none !important;
    transform: scale(1.05) !important;
    transition: transform 0.2s ease !important;
    background: none !important;
}

/* Section styling */
.section-container {
    padding: 40px 20px;
    position: relative;
}

.section-container:before {
    content: '';
    position: absolute;
    top: 0;
    left: 0;
    width: 100%;
    height: 300px;
    background: radial-gradient(ellipse at top, rgba(255,255,255,0.05) 0%, transparent 70%);
    z-index: 0;
}

.da-section h1.section-heading { 
    color: var(--primary-da);
    position: relative;
    display: inline-block;
}

.ml-section h1.section-heading { 
    color: var(--primary-ml);
    position: relative;
    display: inline-block;
}

.cv-section h1.section-heading { 
    color: var(--primary-cv);
    position: relative;
    display: inline-block;
}

.section-heading:after {
    content: '';
    position: absolute;
    bottom: -10px;
    left: 0;
    width: 100%;
    height: 3px;
    border-radius: 3px;
}

.da-section .section-heading:after { background: var(--primary-da); }
.ml-section .section-heading:after { background: var(--primary-ml); }
.cv-section .section-heading:after { background: var(--primary-cv); }

/* Subheadings color-coded */
.section-subheading.da { color: var(--primary-da); }
.section-subheading.ml { color: var(--primary-ml); }
.section-subheading.cv { color: var(--primary-cv); }

/* Back buttons */
.back-button {
    border: none;
    border-radius: var(--border-radius-lg);
    padding: 10px 20px;
    font-size: 0.95rem;
    font-weight: 600;
    cursor: pointer;
    transition: transform var(--transition-fast), box-shadow var(--transition-fast);
    margin-bottom: 30px;
    display: flex;
    align-items: center;
    gap: 8px;
}

.back-button:hover {
    transform: translateY(-3px);
    box-shadow: var(--shadow-md);
}

.back-button-da { 
    background: linear-gradient(45deg, var(--primary-da), var(--secondary-da)); 
    color: #fff; 
}

.back-button-ml { 
    background: linear-gradient(45deg, var(--primary-ml), var(--secondary-ml)); 
    color: #fff; 
}

.back-button-cv { 
    background: linear-gradient(45deg, var(--primary-cv), var(--secondary-cv)); 
    color: #fff; 
}

.back-button svg {
    width: 20px;
    height: 20px;
}

/* Contact form */
.contact-container {
    background: var(--card-bg);
    border-radius: var(--border-radius-md);
    padding: 30px;
    max-width: 600px;
    margin: 0 auto;
    box-shadow: var(--shadow-md);
}

.hire-me-button {
    background: linear-gradient(45deg, var(--primary-da), var(--primary-cv));
    color: white;
    border: none;
    border-radius: var(--border-radius-lg);
    padding: 12px 25px;
    font-size: 1rem;
    font-weight: 600;
    cursor: pointer;
    transition: all var(--transition-med);
    margin-top: 20px;
    box-shadow: var(--shadow-sm);
    display: inline-block;
    text-decoration: none;
}

.hire-me-button:hover {
    transform: translateY(-3px);
    box-shadow: var(--shadow-md);
    filter: brightness(1.1);
}

/* Project cards */
.project-card {
    background: var(--card-bg);
    border-radius: var(--border-radius-md);
    padding: 25px;
    margin-bottom: 20px;
    box-shadow: var(--shadow-sm);
    transition: all var(--transition-med);
    border-left: 4px solid transparent;
}

.da-section .project-card { border-left-color: var(--primary-da); }
.ml-section .project-card { border-left-color: var(--primary-ml); }
.cv-section .project-card { border-left-color: var(--primary-cv); }

.project-card:hover {
    transform: translateX(5px);
    box-shadow: var(--shadow-md);
}

.project-title {
    font-size: 1.3rem;
    font-weight: 600;
    margin-bottom: 10px;
    display: flex;
    align-items: center;
    justify-content: space-between;
}

.project-title-text {
    flex: 1;
}

.project-link {
    color: var(--text-secondary);
    transition: all var(--transition-med);
    text-decoration: none;
    display: inline-flex;
    align-items: center;
    margin-left: 10px;
}

.project-link svg {
    width: 16px;
    height: 16px;
    margin-right: 5px;
}

.da-section .project-title-text { color: var(--primary-da); }
.ml-section .project-title-text { color: var(--primary-ml); }
.cv-section .project-title-text { color: var(--primary-cv); }

.da-section .project-link:hover { color: var(--primary-da); }
.ml-section .project-link:hover { color: var(--primary-ml); }
.cv-section .project-link:hover { color: var(--primary-cv); }

.project-description {
    color: var(--text-secondary);
    line-height: 1.5;
}

.tech-stack {
    display: block;
    margin-top: 10px;
    font-style: italic;
    color: var(--text-muted);
}

/* Skills list */
.skills-list {
    display: grid;
    grid-template-columns: repeat(auto-fill, minmax(220px, 1fr));
    gap: 15px;
    margin-top: 20px;
    margin-bottom: 40px;  /* Added margin to create space between skills and projects */
}

.skill-category {
    background: rgba(255, 255, 255, 0.05);
    border-radius: var(--border-radius-sm);
    padding: 15px;
    transition: all var(--transition-med);
}

.skill-category:hover {
    background: rgba(255, 255, 255, 0.08);
    transform: translateY(-3px);
}

.skill-category h4 {
    margin-top: 0;
    margin-bottom: 10px;
    font-size: 1.1rem;
}

.da-section .skill-category h4 { color: var(--primary-da); }
.ml-section .skill-category h4 { color: var(--primary-ml); }
.cv-section .skill-category h4 { color: var(--primary-cv); }

.skill-category ul {
    margin: 0;
    padding-left: 20px;
    color: var(--text-secondary);
}

.skill-category li {
    margin-bottom: 5px;
}

/* Section intro text */
.section-intro {
    max-width: 800px;
    margin-bottom: 30px;
    line-height: 1.6;
    color: var(--text-secondary);
    font-size: 1.1rem;
}

/* Footer */
.footer {
    text-align: center;
    padding: 40px 20px;
    margin-top: 60px;
    color: var(--text-muted);
    font-size: 0.9rem;
}

/* Animations for scroll */
.animate-on-scroll {
    opacity: 0;
    transform: translateY(20px);
    transition: opacity 0.6s ease, transform 0.6s ease;
}

.animate-on-scroll.show {
    opacity: 1;
    transform: translateY(0);
}

/* Responsive design */
@media (max-width: 768px) {
    .landing-section h1 {
        font-size: 2.5rem;
    }
    
    .landing-section h2 {
        font-size: 1.5rem;
    }
    
    .about-text {
        font-size: 1.1rem;
    }
    
    .cards-grid {
        grid-template-columns: 1fr;
    }
    
    .skills-list {
        grid-template-columns: 1fr;
    }
    
    .profile-pic {
        width: 150px;
        height: 150px;
    }
}

@media (max-width: 480px) {
    .landing-section h1 {
        font-size: 2rem;
    }
    
    .landing-section h2 {
        font-size: 1.2rem;
    }
    
    .card-content {
        min-height: 150px;
        font-size: 22px;
    }
    
    .social-links {
        gap: 15px;
    }
    
    .social-button {
        width: 40px;
        height: 40px;
        font-size: 1rem;
    }
}
"""

# --- Portfolio Layout ---
with gr.Blocks(title="Manyue's Portfolio", css=portfolio_css) as demo:
    # Create sections
    # Data Analytics Section (initially hidden)
    with gr.Row(visible=False, elem_classes="section-container da-section") as da_section:
        with gr.Column():
            # Back button
            back_from_da = gr.Button("← Back to Home", elem_classes="back-button back-button-da")
            gr.HTML("""
            <h1 class="section-heading">Data Analytics</h1>
            <div class="section-intro">
                I specialize in transforming raw data into actionable business insights that drive strategic decision-making. 
                With a strong background in both data analytics and commerce, I bridge the gap between business needs and technical solutions.
                My approach combines statistical analysis with compelling data visualization to tell stories that solve real-world problems.
                I've developed expertise in designing dashboards that make complex data accessible and creating end-to-end analysis
                workflows that uncover hidden patterns and trends.
            </div>
            """)
            
            gr.HTML("""
            <h3 class="section-subheading da">Skills</h3>
            
            <div class="skills-list">
                <div class="skill-category">
                    <h4>Data Visualization</h4>
                    <ul>
                        <li>Power BI</li>
                        <li>Tableau</li>
                        <li>Matplotlib/Seaborn</li>
                        <li>Plotly/Dash</li>
                    </ul>
                </div>
                
                <div class="skill-category">
                    <h4>Data Manipulation</h4>
                    <ul>
                        <li>SQL</li>
                        <li>Pandas</li>
                        <li>NumPy</li>
                        <li>ETL Pipelines</li>
                    </ul>
                </div>
                
                <div class="skill-category">
                    <h4>Analysis Techniques</h4>
                    <ul>
                        <li>Statistical Analysis</li>
                        <li>A/B Testing</li>
                        <li>Time Series Analysis</li>
                        <li>Customer Segmentation</li>
                    </ul>
                </div>
                
                <div class="skill-category">
                    <h4>Business Intelligence</h4>
                    <ul>
                        <li>KPI Development</li>
                        <li>Executive Reporting</li>
                        <li>Data Storytelling</li>
                        <li>Process Optimization</li>
                    </ul>
                </div>
            </div>
            
            <h3 class="section-subheading da">Projects</h3>
            
            <div class="project-card">
                <div class="project-title">
                    <span class="project-title-text">Northwind Sales Insight Dashboard</span>
                    <a href="https://github.com/Manyue-datascientist/northwind-retail-analysis" target="_blank" class="project-link">
                        """ + link_icon + """
                        <span>View Project</span>
                    </a>
                </div>
                <div class="project-description">
                    A business-driven case study where I performed in-depth EDA on the classic Northwind dataset. I uncovered key trends in sales, customer behavior, and product performance, and built a professional dashboard for storytelling using Power BI and SQL.
                    <span class="tech-stack"><strong>Tech Stack:</strong> SQL, Power BI, Pandas</span>
                </div>
            </div>
            
            <div class="project-card">
                <div class="project-title">
                    <span class="project-title-text">Loan Default Risk Analysis</span>
                    <a href="#" target="_blank" class="project-link">
                        """ + link_icon + """
                        <span>View Project</span>
                    </a>
                </div>
                <div class="project-description">
                    A feature-driven analytics project where I identified critical drivers of loan defaults. I applied statistical analysis and visual storytelling to assist in better loan disbursement strategies.
                    <span class="tech-stack"><strong>Tech Stack:</strong> Python, Matplotlib, Pandas</span>
                </div>
            </div>
            """)
    
    # Machine Learning Section (initially hidden)
    with gr.Row(visible=False, elem_classes="section-container ml-section") as ml_section:
        with gr.Column():
            # Back button
            back_from_ml = gr.Button("← Back to Home", elem_classes="back-button back-button-ml")
            gr.HTML("""
            <h1 class="section-heading">Machine Learning</h1>
            <div class="section-intro">
                My machine learning expertise spans from traditional algorithms to deep learning systems that solve real business challenges. 
                I've built end-to-end ML pipelines that deliver measurable impact, combining the right models with appropriate feature engineering 
                techniques. I focus on creating solutions that are not only technically sound but also deployable, maintainable, 
                and integrated with business workflows. With a solid foundation in Python-based ML frameworks and cloud 
                deployment platforms, I develop models that generate actionable predictions and insights.
            </div>
            """)
            
            gr.HTML("""
            <h3 class="section-subheading ml">Skills</h3>
            
            <div class="skills-list">
                <div class="skill-category">
                    <h4>Frameworks & Libraries</h4>
                    <ul>
                        <li>TensorFlow/Keras</li>
                        <li>PyTorch</li>
                        <li>Scikit-Learn</li>
                        <li>XGBoost/LightGBM</li>
                    </ul>
                </div>
                
                <div class="skill-category">
                    <h4>ML Techniques</h4>
                    <ul>
                        <li>Supervised Learning</li>
                        <li>Unsupervised Learning</li>
                        <li>Deep Learning</li>
                        <li>Natural Language Processing</li>
                    </ul>
                </div>
                
                <div class="skill-category">
                    <h4>MLOps</h4>
                    <ul>
                        <li>ML Pipelines</li>
                        <li>Model Monitoring</li>
                        <li>Deployment Strategies</li>
                        <li>Version Control (DVC)</li>
                    </ul>
                </div>
                
                <div class="skill-category">
                    <h4>Cloud ML Services</h4>
                    <ul>
                        <li>AWS SageMaker</li>
                        <li>Google AI Platform</li>
                        <li>Azure ML</li>
                        <li>MLflow</li>
                    </ul>
                </div>
            </div>
            
            <h3 class="section-subheading ml">Projects</h3>
            
            <div class="project-card">
                <div class="project-title">
                    <span class="project-title-text">University Admission Predictor</span>
                    <a href="#" target="_blank" class="project-link">
                        """ + link_icon + """
                        <span>Try the Predictor</span>
                    </a>
                </div>
                <div class="project-description">
                    Built a regression model to predict the chances of a student getting admitted to top universities based on academic profiles. The project includes feature importance analysis, model tuning, and a live demo deployed with Streamlit.
                    <span class="tech-stack"><strong>Tech Stack:</strong> Scikit-learn, Streamlit, NumPy</span>
                </div>
            </div>
            
            <div class="project-card">
                <div class="project-title">
                    <span class="project-title-text">AI Chat Assistant for Recruiters</span>
                    <a href="https://huggingface.co/spaces/Manyue-DataScientist/AI-Assistant" target="_blank" class="project-link">
                        """ + link_icon + """
                        <span>Chat with Assistant</span>
                    </a>
                </div>
                <div class="project-description">
                    A custom-trained assistant that answers queries about my resume and portfolio using NLP and retrieval techniques. Built to simulate real-time interactions with hiring teams, this project showcases my ability to work with large language models and create practical AI applications.
                    <span class="tech-stack"><strong>Tech Stack:</strong> LangChain, OpenAI, Gradio</span>
                </div>
            </div>
            
            <div class="project-card">
                <div class="project-title">
                    <span class="project-title-text">Speaker Diarization Application</span>
                    <a href="https://huggingface.co/spaces/Manyue-DataScientist/speaker-diarization-app-v2" target="_blank" class="project-link">
                        """ + link_icon + """
                        <span>Try the Application</span>
                    </a>
                </div>
                <div class="project-description">
                    Developed an advanced multi-speaker audio processing system that performs speaker diarization, transcription, and summarization to extract meaningful insights from multi-speaker conversations.
                    <span class="tech-stack"><strong>Tech Stack:</strong> PyTorch, Hugging Face Transformers, Gradio</span>
                </div>
            </div>
            """)
    
    # Computer Vision Section (initially hidden)
    with gr.Row(visible=False, elem_classes="section-container cv-section") as cv_section:
        with gr.Column():
            # Back button
            back_from_cv = gr.Button("← Back to Home", elem_classes="back-button back-button-cv")
            gr.HTML("""
            <h1 class="section-heading">Computer Vision</h1>
            <div class="section-intro">
                I'm passionate about developing computer vision systems that can perceive and understand visual information in ways that benefit humans.
                My experience spans from implementing state-of-the-art algorithms to deploying them in real-world scenarios. I've worked on projects 
                that enable machines to "see" and interpret their environment through image processing, object detection, and image classification.
                I focus particularly on applications that improve accessibility and solve tangible problems, creating CV solutions
                that operate efficiently even with hardware constraints.
            </div>
            """)
            
            gr.HTML("""
            <h3 class="section-subheading cv">Skills</h3>
            
            <div class="skills-list">
                <div class="skill-category">
                    <h4>CV Techniques</h4>
                    <ul>
                        <li>Object Detection</li>
                        <li>Image Segmentation</li>
                        <li>Feature Extraction</li>
                        <li>Image Classification</li>
                    </ul>
                </div>
                
                <div class="skill-category">
                    <h4>CV Libraries</h4>
                    <ul>
                        <li>OpenCV</li>
                        <li>PIL/Pillow</li>
                        <li>TorchVision</li>
                        <li>TF Computer Vision</li>
                    </ul>
                </div>
                
                <div class="skill-category">
                    <h4>Deep Learning for CV</h4>
                    <ul>
                        <li>CNNs</li>
                        <li>YOLO frameworks</li>
                        <li>Transfer Learning</li>
                        <li>Object Recognition</li>
                    </ul>
                </div>
                
                <div class="skill-category">
                    <h4>Applications</h4>
                    <ul>
                        <li>Accessibility Solutions</li>
                        <li>OCR/Document Analysis</li>
                        <li>Motion Tracking</li>
                        <li>Edge Deployment</li>
                    </ul>
                </div>
            </div>
            
            <h3 class="section-subheading cv">Projects</h3>
            
            <div class="project-card">
                <div class="project-title">
                    <span class="project-title-text">Smart Shopping Assistant for the Blind</span>
                    <a href="https://github.com/Manyue-datascientist/smart_glove_project" target="_blank" class="project-link">
                        """ + link_icon + """
                        <span>View Project</span>
                    </a>
                </div>
                <div class="project-description">
                    Designed a system using object detection and OCR to help visually impaired individuals find products and navigate shopping aisles. Developed with real-time feedback on Raspberry Pi and OAK-D camera, this project demonstrates my commitment to creating technology that solves real accessibility challenges.
                    <span class="tech-stack"><strong>Tech Stack:</strong> YOLOv8, OpenCV, Raspberry Pi</span>
                </div>
            </div>
            
            <div class="project-card">
                <div class="project-title">
                    <span class="project-title-text">Traffic Flow Counter (Upcoming)</span>
                    <a href="#" target="_blank" class="project-link">
                        """ + link_icon + """
                        <span>Coming Soon</span>
                    </a>
                </div>
                <div class="project-description">
                    An edge solution using Raspberry Pi to monitor and count vehicles at intersections, providing real-time traffic flow analytics. This project demonstrates efficient deployment of CV models on resource-constrained devices.
                    <span class="tech-stack"><strong>Tech Stack:</strong> YOLOv5, Raspberry Pi, OpenCV</span>
                </div>
            </div>
            """)
    
    with gr.Row(visible=True, elem_classes="landing-section") as landing_section:
        with gr.Column():
            # Profile section with picture - using the actual image from data folder
            try:
                # Get the image as data URI
                profile_img_uri = image_to_data_uri("data/My_photo.jpeg")
                gr.HTML(f"""
                <div class="profile-container">
                    <div class="profile-pic">
                        <img src="{profile_img_uri}" alt="Manyue Javvadi" />
                    </div>
                    <div class="name-text">Manyue Javvadi</div>
                </div>
                <h2>AI/ML Engineer & Data Scientist</h2>
                <div class="about-text">
                    I'm a software engineer turned AI/ML practitioner with a strong foundation in Commerce and experience in ML, computer vision, and data analytics.
                    I blend business understanding with data-driven thinking to create real-world solutions. Currently open to roles in Data Science, Machine Learning Engineering, and Computer Vision.
                </div>
                
                <div class="skills-container">
                    <div class="skill-pill">Python</div>
                    <div class="skill-pill">Machine Learning</div>
                    <div class="skill-pill">TensorFlow</div>
                    <div class="skill-pill">PyTorch</div>
                    <div class="skill-pill">Computer Vision</div>
                    <div class="skill-pill">Data Analytics</div>
                    <div class="skill-pill">SQL</div>
                    <div class="skill-pill">Power BI</div>
                </div>
                
                <div class="social-links">
                    <a href="https://www.linkedin.com/in/manyue-javvadi-datascientist/" target="_blank" class="social-button social-linkedin" aria-label="LinkedIn">
                        """ + linkedin_icon + """
                    </a>
                    <a href="https://github.com/Manyue-datascientist" target="_blank" class="social-button social-github" aria-label="GitHub">
                        """ + github_icon + """
                    </a>
                    <a href="mailto:[email protected]" class="social-button social-email" aria-label="Contact Me" id="contact_btn">
                        """ + mail_icon + """
                    </a>
                </div>
                
                <h2>My Specializations</h2>
                """)
            except Exception as e:
                # Fallback if image cannot be loaded
                gr.HTML("""
                <div class="profile-container">
                    <div class="profile-pic">
                        <img src="/api/placeholder/400/400" alt="Manyue Javvadi" />
                    </div>
                    <div class="name-text">Manyue Javvadi</div>
                </div>
                <h2>AI/ML Engineer & Data Scientist</h2>
                <div class="about-text">
                    I'm a software engineer turned AI/ML practitioner with a strong foundation in Commerce and experience in ML, computer vision, and data analytics.
                    I blend business understanding with data-driven thinking to create real-world solutions. Currently open to roles in Data Science, Machine Learning Engineering, and Computer Vision.
                </div>
                
                <div class="skills-container">
                    <div class="skill-pill">Python</div>
                    <div class="skill-pill">Machine Learning</div>
                    <div class="skill-pill">TensorFlow</div>
                    <div class="skill-pill">PyTorch</div>
                    <div class="skill-pill">Computer Vision</div>
                    <div class="skill-pill">Data Analytics</div>
                    <div class="skill-pill">SQL</div>
                    <div class="skill-pill">Power BI</div>
                </div>
                
                <div class="social-links">
                    <a href="https://www.linkedin.com/in/manyue-javvadi-datascientist/" target="_blank" class="social-button social-linkedin" aria-label="LinkedIn">
                        """ + linkedin_icon + """
                    </a>
                    <a href="https://github.com/Manyue-datascientist" target="_blank" class="social-button social-github" aria-label="GitHub">
                        """ + github_icon + """
                    </a>
                    <a href="mailto:[email protected]" class="social-button social-email" aria-label="Contact Me" id="contact_btn">
                        """ + mail_icon + """
                    </a>
                </div>
                
                <h2>My Specializations</h2>
                """)
            
            # Cards Grid with proper structure
            with gr.Row(elem_classes="cards-grid"):
                with gr.Column():
                    # Data Analytics Card 
                    gr.HTML('<div class="card-container da">')
                    da_button = gr.Button("Data Analytics", elem_classes="card-button")
                    gr.HTML("""
                    <div class="card-inner">
                        <div class="card-content">
                        """ + data_analytics_icon + """
                        <span>Data Analytics</span>
                        </div>
                        <div class="card-description">
                        Data storytelling, insights extraction, interactive dashboards & business problem-solving
                        </div>
                    </div>
                    </div>
                    """)
                    
                with gr.Column():
                    # Machine Learning Card
                    gr.HTML('<div class="card-container ml">')
                    ml_button = gr.Button("Machine Learning", elem_classes="card-button")
                    gr.HTML("""
                    <div class="card-inner">
                        <div class="card-content">
                        """ + machine_learning_icon + """
                        <span>Machine Learning</span>
                        </div>
                        <div class="card-description">
                        Feature engineering, model training, deployment & automation pipelines
                        </div>
                    </div>
                    </div>
                    """)
                    
                with gr.Column():
                    # Computer Vision Card
                    gr.HTML('<div class="card-container cv">')
                    cv_button = gr.Button("Computer Vision", elem_classes="card-button")
                    gr.HTML("""
                    <div class="card-inner">
                        <div class="card-content">
                        """ + computer_vision_icon + """
                        <span>Computer Vision</span>
                        </div>
                        <div class="card-description">
                        Object detection, image recognition, edge AI & accessibility applications
                        </div>
                    </div>
                    </div>
                    """)
            
            # Contact section - Updated to "Hire Me" with email link
            gr.HTML("""            
            <!-- Contact section -->
            <div id="contact_section">
            <h2>Contact Me</h2>
            <div class="contact-container">
                <p>Looking for a data scientist or ML engineer for your team?</p>
                <a href="mailto:[email protected]" class="hire-me-button">Hire Me</a>
            </div>
            </div>
            
            <!-- Footer -->
            <div class="footer">
            <p>Β© 2025 Manyue Javvadi. All rights reserved.</p>
            <p>Made with Gradio</p>
            </div>
            """)
    
    # Set up click events for navigation
    da_button.click(show_data_analytics, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
    ml_button.click(show_machine_learning, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
    cv_button.click(show_computer_vision, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
    
    back_from_da.click(go_home, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
    back_from_ml.click(go_home, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
    back_from_cv.click(go_home, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])

# Launch the app
demo.launch()