Update app.py
Browse files
app.py
CHANGED
@@ -1,190 +1,190 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
def format_project_response(project: dict, indent_level: int = 0) -> str:
|
7 |
-
"""Format project details with proper indentation and spacing"""
|
8 |
-
indent = " " * indent_level
|
9 |
-
|
10 |
-
response = [f"{indent}• {project['name']}"]
|
11 |
-
response.append(f"{indent} {project['description']}")
|
12 |
-
|
13 |
-
if 'skills_used' in project:
|
14 |
-
response.append(f"{indent} Technologies: {', '.join(project['skills_used'])}")
|
15 |
-
|
16 |
-
if 'status' in project:
|
17 |
-
status = project['status']
|
18 |
-
if 'development' in status.lower() or 'progress' in status.lower():
|
19 |
-
response.append(f"{indent} Status: {status}")
|
20 |
-
if 'confidentiality_note' in project:
|
21 |
-
response.append(f"{indent} Note: {project['confidentiality_note']}")
|
22 |
-
|
23 |
-
return '\n'.join(response) + '\n'
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
}
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
return '\n'.join(response)
|
44 |
-
|
45 |
-
def analyze_job_description(text: str, knowledge_base: dict) -> str:
|
46 |
-
"""Analyze job description and provide detailed alignment"""
|
47 |
-
# Extract key requirements
|
48 |
-
requirements = {
|
49 |
-
'technical_tools': set(),
|
50 |
-
'soft_skills': set(),
|
51 |
-
'responsibilities': set()
|
52 |
-
}
|
53 |
-
|
54 |
-
# Common technical tools and skills
|
55 |
-
tech_keywords = {
|
56 |
-
'data science', 'analytics', 'visualization', 'tableau', 'python',
|
57 |
-
'machine learning', 'modeling', 'automation', 'sql', 'data analysis'
|
58 |
-
}
|
59 |
-
|
60 |
-
# Common soft skills
|
61 |
-
soft_keywords = {
|
62 |
-
'collaborate', 'communicate', 'analyze', 'design', 'implement',
|
63 |
-
'produce insights', 'improve', 'support'
|
64 |
-
}
|
65 |
-
|
66 |
-
text_lower = text.lower()
|
67 |
-
|
68 |
-
# Extract company name if present
|
69 |
-
companies = ['rbc', 'shopify', 'google', 'microsoft', 'amazon']
|
70 |
-
company_name = next((company.upper() for company in companies if company in text_lower), None)
|
71 |
-
|
72 |
-
# Extract requirements
|
73 |
-
for word in tech_keywords:
|
74 |
-
if word in text_lower:
|
75 |
-
requirements['technical_tools'].add(word)
|
76 |
-
|
77 |
-
for word in soft_keywords:
|
78 |
-
if word in text_lower:
|
79 |
-
requirements['soft_skills'].add(word)
|
80 |
-
|
81 |
-
# Build response
|
82 |
-
response_parts = []
|
83 |
-
|
84 |
-
# Company-specific introduction if applicable
|
85 |
-
if company_name:
|
86 |
-
response_parts.append(f"Here's how I align with {company_name}'s requirements:\n")
|
87 |
-
else:
|
88 |
-
response_parts.append("Based on the job requirements, here's how I align:\n")
|
89 |
-
|
90 |
-
# Technical Skills Alignment
|
91 |
-
response_parts.append("• Technical Skills Match:")
|
92 |
-
my_relevant_skills = []
|
93 |
-
if 'visualization' in requirements['technical_tools'] or 'tableau' in requirements['technical_tools']:
|
94 |
-
my_relevant_skills.append(" - Proficient in Tableau and data visualization (used in multiple projects)")
|
95 |
-
if 'data analysis' in requirements['technical_tools']:
|
96 |
-
my_relevant_skills.append(" - Strong data analysis skills demonstrated in projects like LoanTap Credit Assessment")
|
97 |
-
if 'machine learning' in requirements['technical_tools'] or 'modeling' in requirements['technical_tools']:
|
98 |
-
my_relevant_skills.append(" - Experienced in building ML models from scratch (demonstrated in algorithm practice projects)")
|
99 |
-
|
100 |
-
response_parts.extend(my_relevant_skills)
|
101 |
-
response_parts.append("")
|
102 |
-
|
103 |
-
# Business Understanding
|
104 |
-
response_parts.append("• Business Acumen:")
|
105 |
-
response_parts.append(" - Commerce background provides strong understanding of business requirements")
|
106 |
-
response_parts.append(" - Experience in translating business needs into technical solutions")
|
107 |
-
response_parts.append(" - Proven ability to communicate technical findings to business stakeholders")
|
108 |
-
response_parts.append("")
|
109 |
-
|
110 |
-
# Project Experience
|
111 |
-
response_parts.append("• Relevant Project Experience:")
|
112 |
-
relevant_projects = []
|
113 |
-
if 'automation' in requirements['technical_tools']:
|
114 |
-
relevant_projects.append(" - Developed AI-powered POS system with automated operations")
|
115 |
-
if 'data analysis' in requirements['technical_tools']:
|
116 |
-
relevant_projects.append(" - Built credit assessment model for LoanTap using comprehensive data analysis")
|
117 |
-
if 'machine learning' in requirements['technical_tools']:
|
118 |
-
relevant_projects.append(" - Created multiple ML models from scratch, including predictive analytics for Ola")
|
119 |
-
|
120 |
-
response_parts.extend(relevant_projects)
|
121 |
-
response_parts.append("")
|
122 |
-
|
123 |
-
# Education and Additional Qualifications
|
124 |
-
response_parts.append("• Additional Strengths:")
|
125 |
-
response_parts.append(" - Currently pursuing advanced AI/ML education in Canada")
|
126 |
-
response_parts.append(" - Strong foundation in both technical implementation and business analysis")
|
127 |
-
response_parts.append(" - Experience in end-to-end project delivery and deployment")
|
128 |
-
|
129 |
-
return '\n'.join(response_parts)
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
-
|
188 |
"""Add relevant links based on query context"""
|
189 |
query_lower = query.lower()
|
190 |
links = []
|
@@ -205,133 +205,138 @@
|
|
205 |
|
206 |
return response
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
# Enhanced formatting for better readability
|
213 |
-
response_parts = [
|
214 |
-
"Here's my perspective on the current market situation:\n",
|
215 |
-
f"• {market_outlook['job_market']}",
|
216 |
-
f"\n• {market_outlook['value_proposition']}",
|
217 |
-
f"\n• {market_outlook['strategy']}"
|
218 |
-
]
|
219 |
-
|
220 |
-
return '\n'.join(response_parts)
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
# Improved weather-related query detection
|
227 |
-
if any(word in query_lower for word in ['weather', 'temperature', 'climate', 'cold', 'hot', 'warm']):
|
228 |
-
return knowledge_base['personal_details']['common_queries']['weather']
|
229 |
-
|
230 |
-
# Enhanced market-related query detection
|
231 |
-
if any(phrase in query_lower for word in ['market', 'job market', 'jobs', 'opportunities', 'hiring']):
|
232 |
-
return handle_market_conditions(knowledge_base)
|
233 |
-
|
234 |
-
# More specific job fit query detection
|
235 |
-
if any(phrase in query_lower for phrase in ['job description', 'job posting', 'job requirement', 'good fit']):
|
236 |
-
return ("Please paste the job description you'd like me to analyze. I'll evaluate how my skills and experience align with the requirements.")
|
237 |
-
|
238 |
-
# Default to personal summary
|
239 |
-
return knowledge_base['personal_details']['professional_summary']
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
['requirements', 'qualifications', 'looking for', 'responsibilities', 'skills needed'])):
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
# Add user message
|
333 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
334 |
-
|
335 |
try:
|
336 |
# Generate and display response
|
337 |
with st.chat_message("assistant"):
|
@@ -340,9 +345,9 @@
|
|
340 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
341 |
except Exception as e:
|
342 |
st.error(f"An error occurred: {str(e)}")
|
343 |
-
|
344 |
st.rerun()
|
345 |
-
|
346 |
with col2:
|
347 |
st.markdown("### Quick Questions")
|
348 |
example_questions = [
|
@@ -352,7 +357,7 @@
|
|
352 |
"What's your journey into ML?",
|
353 |
"Paste a job description to see how I match!"
|
354 |
]
|
355 |
-
|
356 |
for question in example_questions:
|
357 |
if st.button(question, key=f"btn_{question}", use_container_width=True):
|
358 |
st.session_state.messages.append({"role": "user", "content": question})
|
@@ -362,11 +367,11 @@
|
|
362 |
except Exception as e:
|
363 |
st.error(f"An error occurred: {str(e)}")
|
364 |
st.rerun()
|
365 |
-
|
366 |
st.markdown("---")
|
367 |
if st.button("Clear Chat", use_container_width=True):
|
368 |
st.session_state.messages = []
|
369 |
st.rerun()
|
370 |
|
371 |
if __name__ == "__main__":
|
372 |
-
main()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import json
|
3 |
+
from typing import Dict, List, Any
|
4 |
+
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
def format_project_response(project: dict, indent_level: int = 0) -> str:
|
7 |
+
"""Format project details with proper indentation and spacing"""
|
8 |
+
indent = " " * indent_level
|
9 |
+
|
10 |
+
response = [f"{indent}• {project['name']}"]
|
11 |
+
response.append(f"{indent} {project['description']}")
|
12 |
+
|
13 |
+
if 'skills_used' in project:
|
14 |
+
response.append(f"{indent} Technologies: {', '.join(project['skills_used'])}")
|
15 |
+
|
16 |
+
if 'status' in project:
|
17 |
+
status = project['status']
|
18 |
+
if 'development' in status.lower() or 'progress' in status.lower():
|
19 |
+
response.append(f"{indent} Status: {status}")
|
20 |
+
if 'confidentiality_note' in project:
|
21 |
+
response.append(f"{indent} Note: {project['confidentiality_note']}")
|
22 |
+
|
23 |
+
return '\n'.join(response) + '\n'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
def format_skills_response(skills: dict) -> str:
|
26 |
+
"""Format skills with proper hierarchy and spacing"""
|
27 |
+
response = ["My Technical Expertise:\n"]
|
28 |
+
|
29 |
+
categories = {
|
30 |
+
'Machine Learning & AI': ['core', 'frameworks', 'focus_areas'],
|
31 |
+
'Programming': ['primary', 'libraries', 'tools'],
|
32 |
+
'Data & Analytics': ['databases', 'visualization', 'processing']
|
33 |
+
}
|
34 |
+
|
35 |
+
for category, subcategories in categories.items():
|
36 |
+
response.append(f"• {category}")
|
37 |
+
for subcat in subcategories:
|
38 |
+
if subcat in skills['machine_learning']:
|
39 |
+
items = skills['machine_learning'][subcat]
|
40 |
+
response.append(f" - {subcat.title()}: {', '.join(items)}")
|
41 |
+
response.append("") # Add spacing between categories
|
42 |
+
|
43 |
+
return '\n'.join(response)
|
44 |
+
|
45 |
+
def analyze_job_description(text: str, knowledge_base: dict) -> str:
|
46 |
+
"""Analyze job description and provide detailed alignment"""
|
47 |
+
# Extract key requirements
|
48 |
+
requirements = {
|
49 |
+
'technical_tools': set(),
|
50 |
+
'soft_skills': set(),
|
51 |
+
'responsibilities': set()
|
52 |
+
}
|
53 |
+
|
54 |
+
# Common technical tools and skills
|
55 |
+
tech_keywords = {
|
56 |
+
'data science', 'analytics', 'visualization', 'tableau', 'python',
|
57 |
+
'machine learning', 'modeling', 'automation', 'sql', 'data analysis'
|
58 |
+
}
|
59 |
+
|
60 |
+
# Common soft skills
|
61 |
+
soft_keywords = {
|
62 |
+
'collaborate', 'communicate', 'analyze', 'design', 'implement',
|
63 |
+
'produce insights', 'improve', 'support'
|
64 |
+
}
|
65 |
+
|
66 |
+
text_lower = text.lower()
|
67 |
+
|
68 |
+
# Extract company name if present
|
69 |
+
companies = ['rbc', 'shopify', 'google', 'microsoft', 'amazon']
|
70 |
+
company_name = next((company.upper() for company in companies if company in text_lower), None)
|
71 |
+
|
72 |
+
# Extract requirements
|
73 |
+
for word in tech_keywords:
|
74 |
+
if word in text_lower:
|
75 |
+
requirements['technical_tools'].add(word)
|
76 |
+
|
77 |
+
for word in soft_keywords:
|
78 |
+
if word in text_lower:
|
79 |
+
requirements['soft_skills'].add(word)
|
80 |
+
|
81 |
+
# Build response
|
82 |
+
response_parts = []
|
83 |
+
|
84 |
+
# Company-specific introduction if applicable
|
85 |
+
if company_name:
|
86 |
+
response_parts.append(f"Here's how I align with {company_name}'s requirements:\n")
|
87 |
+
else:
|
88 |
+
response_parts.append("Based on the job requirements, here's how I align:\n")
|
89 |
+
|
90 |
+
# Technical Skills Alignment
|
91 |
+
response_parts.append("• Technical Skills Match:")
|
92 |
+
my_relevant_skills = []
|
93 |
+
if 'visualization' in requirements['technical_tools'] or 'tableau' in requirements['technical_tools']:
|
94 |
+
my_relevant_skills.append(" - Proficient in Tableau and data visualization (used in multiple projects)")
|
95 |
+
if 'data analysis' in requirements['technical_tools']:
|
96 |
+
my_relevant_skills.append(" - Strong data analysis skills demonstrated in projects like LoanTap Credit Assessment")
|
97 |
+
if 'machine learning' in requirements['technical_tools'] or 'modeling' in requirements['technical_tools']:
|
98 |
+
my_relevant_skills.append(" - Experienced in building ML models from scratch (demonstrated in algorithm practice projects)")
|
99 |
+
|
100 |
+
response_parts.extend(my_relevant_skills)
|
101 |
+
response_parts.append("")
|
102 |
+
|
103 |
+
# Business Understanding
|
104 |
+
response_parts.append("• Business Acumen:")
|
105 |
+
response_parts.append(" - Commerce background provides strong understanding of business requirements")
|
106 |
+
response_parts.append(" - Experience in translating business needs into technical solutions")
|
107 |
+
response_parts.append(" - Proven ability to communicate technical findings to business stakeholders")
|
108 |
+
response_parts.append("")
|
109 |
+
|
110 |
+
# Project Experience
|
111 |
+
response_parts.append("• Relevant Project Experience:")
|
112 |
+
relevant_projects = []
|
113 |
+
if 'automation' in requirements['technical_tools']:
|
114 |
+
relevant_projects.append(" - Developed AI-powered POS system with automated operations")
|
115 |
+
if 'data analysis' in requirements['technical_tools']:
|
116 |
+
relevant_projects.append(" - Built credit assessment model for LoanTap using comprehensive data analysis")
|
117 |
+
if 'machine learning' in requirements['technical_tools']:
|
118 |
+
relevant_projects.append(" - Created multiple ML models from scratch, including predictive analytics for Ola")
|
119 |
+
|
120 |
+
response_parts.extend(relevant_projects)
|
121 |
+
response_parts.append("")
|
122 |
+
|
123 |
+
# Education and Additional Qualifications
|
124 |
+
response_parts.append("• Additional Strengths:")
|
125 |
+
response_parts.append(" - Currently pursuing advanced AI/ML education in Canada")
|
126 |
+
response_parts.append(" - Strong foundation in both technical implementation and business analysis")
|
127 |
+
response_parts.append(" - Experience in end-to-end project delivery and deployment")
|
128 |
+
|
129 |
+
return '\n'.join(response_parts)
|
130 |
+
|
131 |
+
def format_story_response(knowledge_base: dict) -> str:
|
132 |
+
"""Format background story with proper structure"""
|
133 |
+
response_parts = ["My Journey from Commerce to ML/AI:\n"]
|
134 |
+
|
135 |
+
# Education Background
|
136 |
+
response_parts.append("• Education Background:")
|
137 |
+
response_parts.append(f" - Commerce degree from {knowledge_base['education']['undergraduate']['institution']}")
|
138 |
+
response_parts.append(f" - Currently at {knowledge_base['education']['postgraduate'][0]['institution']}")
|
139 |
+
response_parts.append(f" - Also enrolled at {knowledge_base['education']['postgraduate'][1]['institution']}")
|
140 |
+
response_parts.append("")
|
141 |
+
|
142 |
+
# Career Transition
|
143 |
+
response_parts.append("• Career Transition:")
|
144 |
+
transition = next((qa['answer'] for qa in knowledge_base['frequently_asked_questions']
|
145 |
+
if 'transition' in qa['question'].lower()), '')
|
146 |
+
response_parts.append(f" - {transition[:200]}...")
|
147 |
+
response_parts.append("")
|
148 |
+
|
149 |
+
# Current Focus
|
150 |
+
response_parts.append("• Current Focus:")
|
151 |
+
response_parts.append(" - Building practical ML projects")
|
152 |
+
response_parts.append(" - Advancing AI/ML education in Canada")
|
153 |
+
response_parts.append("")
|
154 |
+
|
155 |
+
# Goals
|
156 |
+
response_parts.append("• Future Goals:")
|
157 |
+
response_parts.append(" - Secure ML Engineering role in Canada")
|
158 |
+
response_parts.append(" - Develop innovative AI solutions")
|
159 |
+
response_parts.append(" - Contribute to cutting-edge ML projects")
|
160 |
+
|
161 |
+
return '\n'.join(response_parts)
|
162 |
+
|
163 |
+
def format_standout_response() -> str:
|
164 |
+
"""Format response about standout qualities"""
|
165 |
+
response_parts = ["What Makes Me Stand Out:\n"]
|
166 |
+
response_parts.append("• Unique Background:")
|
167 |
+
response_parts.append(" - Successfully transitioned from commerce to tech")
|
168 |
+
response_parts.append(" - Blend of business acumen and technical expertise")
|
169 |
+
response_parts.append("")
|
170 |
+
|
171 |
+
response_parts.append("• Practical Experience:")
|
172 |
+
response_parts.append(" - Built multiple ML projects from scratch")
|
173 |
+
response_parts.append(" - Focus on real-world applications")
|
174 |
+
response_parts.append("")
|
175 |
+
|
176 |
+
response_parts.append("• Technical Depth:")
|
177 |
+
response_parts.append(" - Strong foundation in ML/AI principles")
|
178 |
+
response_parts.append(" - Experience with end-to-end project implementation")
|
179 |
+
response_parts.append("")
|
180 |
+
|
181 |
+
response_parts.append("• Innovation Focus:")
|
182 |
+
response_parts.append(" - Developing novel solutions in ML/AI")
|
183 |
+
response_parts.append(" - Emphasis on practical impact")
|
184 |
+
|
185 |
+
return '\n'.join(response_parts)
|
186 |
|
187 |
+
def add_relevant_links(response: str, query: str, knowledge_base: dict) -> str:
|
188 |
"""Add relevant links based on query context"""
|
189 |
query_lower = query.lower()
|
190 |
links = []
|
|
|
205 |
|
206 |
return response
|
207 |
|
208 |
+
import streamlit as st
|
209 |
+
import json
|
210 |
+
from typing import Dict, List, Any
|
211 |
+
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
+
def handle_market_conditions(knowledge_base: dict) -> str:
|
214 |
+
"""Handle market condition related queries with perspective"""
|
215 |
+
market_outlook = knowledge_base['personal_details']['perspectives']['market_outlook']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
+
# Enhanced formatting for better readability
|
218 |
+
response_parts = [
|
219 |
+
"Here's my perspective on the current market situation:\n",
|
220 |
+
f"• {market_outlook['job_market']}",
|
221 |
+
f"\n• {market_outlook['value_proposition']}",
|
222 |
+
f"\n• {market_outlook['strategy']}"
|
223 |
+
]
|
224 |
+
|
225 |
+
return '\n'.join(response_parts)
|
226 |
+
|
227 |
+
def handle_general_query(query: str, knowledge_base: dict) -> str:
|
228 |
+
"""Enhanced handling of general queries"""
|
229 |
+
query_lower = query.lower()
|
230 |
+
|
231 |
+
# Improved weather-related query detection
|
232 |
+
if any(word in query_lower for word in ['weather', 'temperature', 'climate', 'cold', 'hot', 'warm']):
|
233 |
+
return knowledge_base['personal_details']['common_queries']['weather']
|
234 |
+
|
235 |
+
# Enhanced market-related query detection
|
236 |
+
if any(phrase in query_lower for phrase in ['market', 'job market', 'jobs', 'opportunities', 'hiring']):
|
237 |
+
return handle_market_conditions(knowledge_base)
|
238 |
+
|
239 |
+
# More specific job fit query detection
|
240 |
+
if any(phrase in query_lower for phrase in ['job description', 'job posting', 'job requirement', 'good fit']):
|
241 |
+
return ("Please paste the job description you'd like me to analyze. I'll evaluate how my skills and experience align with the requirements.")
|
242 |
+
|
243 |
+
# Default to personal summary
|
244 |
+
return knowledge_base['personal_details']['professional_summary']
|
245 |
+
|
246 |
+
def generate_response(query: str, knowledge_base: dict) -> str:
|
247 |
+
"""Enhanced response generation with improved pattern matching"""
|
248 |
+
query_lower = query.lower()
|
249 |
+
|
250 |
+
# Enhanced market conditions detection
|
251 |
+
if any(word in query_lower for word in ['market', 'job market', 'hiring']) or \
|
252 |
+
any(phrase in query_lower for phrase in ['market down', 'market conditions', 'current situation']):
|
253 |
+
return handle_market_conditions(knowledge_base)
|
254 |
+
|
255 |
+
# Enhanced job description analysis detection
|
256 |
+
if ('job description' in query_lower or 'job posting' in query_lower) or \
|
257 |
+
(len(query.split()) > 20 and any(word in query_lower for word in
|
258 |
['requirements', 'qualifications', 'looking for', 'responsibilities', 'skills needed'])):
|
259 |
+
if len(query.split()) < 20:
|
260 |
+
return "Please paste the complete job description, and I'll analyze how well I match the requirements."
|
261 |
+
return analyze_job_description(query, knowledge_base)
|
262 |
+
|
263 |
+
# Enhanced weather query detection
|
264 |
+
if any(word in query_lower for word in ['weather', 'temperature', 'climate', 'cold', 'hot', 'warm']):
|
265 |
+
return handle_general_query(query, knowledge_base)
|
266 |
+
|
267 |
+
# Existing handlers remain unchanged
|
268 |
+
if any(word in query_lower for word in ['list', 'project', 'portfolio', 'built', 'created', 'developed']):
|
269 |
+
response_parts = ["Here are my key projects:\n"]
|
270 |
+
response_parts.append("Major Projects (In Development):")
|
271 |
+
for project in knowledge_base['projects']['major_projects']:
|
272 |
+
response_parts.append(format_project_response(project, indent_level=1))
|
273 |
+
response_parts.append("Completed Algorithm Implementation Projects:")
|
274 |
+
for project in knowledge_base['projects']['algorithm_practice_projects']:
|
275 |
+
response_parts.append(format_project_response(project, indent_level=1))
|
276 |
+
response = '\n'.join(response_parts)
|
277 |
+
return add_relevant_links(response, query, knowledge_base)
|
278 |
+
|
279 |
+
elif any(word in query_lower for word in ['background', 'journey', 'story', 'transition']):
|
280 |
+
return format_story_response(knowledge_base)
|
281 |
+
|
282 |
+
elif any(word in query_lower for word in ['skill', 'know', 'technology', 'stack']):
|
283 |
+
return format_skills_response(knowledge_base['skills']['technical_skills'])
|
284 |
+
|
285 |
+
elif any(word in query_lower for word in ['stand out', 'unique', 'different', 'special']):
|
286 |
+
return format_standout_response()
|
287 |
+
|
288 |
+
# General query handler for shorter queries
|
289 |
+
elif len(query.split()) < 5:
|
290 |
+
return handle_general_query(query, knowledge_base)
|
291 |
+
|
292 |
+
# Default response
|
293 |
+
return (f"I'm {knowledge_base['personal_details']['professional_summary']}\n\n"
|
294 |
+
"You can ask me about:\n"
|
295 |
+
"• My projects and portfolio\n"
|
296 |
+
"• My journey from commerce to ML/AI\n"
|
297 |
+
"• My technical skills and experience\n"
|
298 |
+
"• My fit for ML/AI roles\n"
|
299 |
+
"Or paste a job description to see how my profile matches!")
|
300 |
+
|
301 |
+
def main():
|
302 |
+
st.title("💬 Chat with Manyue's Portfolio")
|
303 |
+
|
304 |
+
# Initialize session state
|
305 |
+
if "messages" not in st.session_state:
|
306 |
+
st.session_state.messages = []
|
307 |
+
if "knowledge_base" not in st.session_state:
|
308 |
+
try:
|
309 |
+
with open('knowledge_base.json', 'r', encoding='utf-8') as f:
|
310 |
+
st.session_state.knowledge_base = json.load(f)
|
311 |
+
except FileNotFoundError:
|
312 |
+
st.error("Knowledge base file not found.")
|
313 |
+
return
|
314 |
+
|
315 |
+
# Display welcome message
|
316 |
+
if "displayed_welcome" not in st.session_state:
|
317 |
+
st.write("""
|
318 |
+
Hi! I'm Manyue's AI assistant. I can tell you about:
|
319 |
+
- My journey from commerce to ML/AI
|
320 |
+
- My technical skills and projects
|
321 |
+
- My fit for ML/AI roles
|
322 |
+
- You can also paste job descriptions to see how my profile matches!
|
323 |
+
""")
|
324 |
+
st.session_state.displayed_welcome = True
|
325 |
+
|
326 |
+
# Create two columns with adjusted ratios
|
327 |
+
col1, col2 = st.columns([4, 1])
|
328 |
+
|
329 |
+
with col1:
|
330 |
+
# Display chat messages
|
331 |
+
for message in st.session_state.messages:
|
332 |
+
with st.chat_message(message["role"]):
|
333 |
+
st.markdown(message["content"])
|
334 |
+
|
335 |
+
# Chat input
|
336 |
+
if prompt := st.chat_input("Ask me anything or paste a job description..."):
|
337 |
# Add user message
|
338 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
339 |
+
|
340 |
try:
|
341 |
# Generate and display response
|
342 |
with st.chat_message("assistant"):
|
|
|
345 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
346 |
except Exception as e:
|
347 |
st.error(f"An error occurred: {str(e)}")
|
348 |
+
|
349 |
st.rerun()
|
350 |
+
|
351 |
with col2:
|
352 |
st.markdown("### Quick Questions")
|
353 |
example_questions = [
|
|
|
357 |
"What's your journey into ML?",
|
358 |
"Paste a job description to see how I match!"
|
359 |
]
|
360 |
+
|
361 |
for question in example_questions:
|
362 |
if st.button(question, key=f"btn_{question}", use_container_width=True):
|
363 |
st.session_state.messages.append({"role": "user", "content": question})
|
|
|
367 |
except Exception as e:
|
368 |
st.error(f"An error occurred: {str(e)}")
|
369 |
st.rerun()
|
370 |
+
|
371 |
st.markdown("---")
|
372 |
if st.button("Clear Chat", use_container_width=True):
|
373 |
st.session_state.messages = []
|
374 |
st.rerun()
|
375 |
|
376 |
if __name__ == "__main__":
|
377 |
+
main()
|