|
import streamlit as st |
|
import json |
|
from typing import Dict, List, Any |
|
import re |
|
|
|
def format_project_response(project: dict, indent_level: int = 0) -> str: |
|
"""Format project details with proper indentation and spacing""" |
|
indent = " " * indent_level |
|
response = [f"\n{indent}• {project['name']}:"] |
|
|
|
|
|
description_lines = project['description'].split('. ') |
|
response.extend([f"{indent} {line.strip()}." for line in description_lines]) |
|
|
|
|
|
if 'skills_used' in project: |
|
response.append(f"\n{indent} Technologies: {', '.join(project['skills_used'])}") |
|
|
|
|
|
if 'status' in project: |
|
status = project['status'] |
|
if 'development' in status.lower() or 'progress' in status.lower(): |
|
response.append(f"\n{indent} Status: {status}") |
|
if 'confidentiality_note' in project: |
|
response.append(f"{indent} Note: {project['confidentiality_note']}") |
|
|
|
return '\n'.join(response) + '\n' |
|
|
|
def analyze_job_requirements(text: str, knowledge_base: dict) -> Dict[str, List[str]]: |
|
"""Analyze job requirements and match with skills""" |
|
text_lower = text.lower() |
|
|
|
|
|
tech_keywords = { |
|
'machine learning': ['ml', 'machine learning', 'deep learning', 'neural networks'], |
|
'data science': ['data science', 'data analysis', 'analytics', 'statistics'], |
|
'programming': ['python', 'sql', 'programming', 'coding'], |
|
'tools': ['tableau', 'powerbi', 'visualization', 'git'], |
|
'cloud': ['aws', 'azure', 'cloud', 'deployment'] |
|
} |
|
|
|
|
|
matches = {category: [] for category in tech_keywords} |
|
my_skills = { |
|
skill.lower() |
|
for skill_type in knowledge_base['skills']['technical_skills'].values() |
|
for skill_list in skill_type.values() |
|
for skill in skill_list |
|
} |
|
|
|
|
|
for category, keywords in tech_keywords.items(): |
|
for keyword in keywords: |
|
if keyword in text_lower and any(skill in keyword or keyword in skill for skill in my_skills): |
|
matches[category].append(keyword) |
|
|
|
return matches |
|
|
|
def handle_perspective_query(query: str, knowledge_base: dict) -> str: |
|
"""Handle philosophical or perspective-based queries""" |
|
query_lower = query.lower() |
|
perspectives = knowledge_base.get('perspectives', {}) |
|
|
|
|
|
if any(word in query_lower for word in ['market', 'opportunity', 'job', 'hiring']): |
|
if any(word in query_lower for word in ['down', 'bad', 'difficult', 'tough']): |
|
response_parts = [ |
|
"• My Perspective on the Current Market:", |
|
f" {perspectives['market_outlook']['job_market']}", |
|
"", |
|
"• My Strategic Approach:", |
|
f" {perspectives['market_outlook']['strategy']}", |
|
"", |
|
"• My Unique Value Proposition:", |
|
f" {perspectives['market_outlook']['value_proposition']}" |
|
] |
|
return '\n'.join(response_parts) |
|
|
|
|
|
elif any(word in query_lower for word in ['learn', 'study', 'growth']): |
|
return f"• My Learning Philosophy:\n {perspectives['learning_philosophy']}" |
|
|
|
|
|
return knowledge_base['common_queries']['general'] |
|
|
|
def generate_response(query: str, knowledge_base: dict) -> str: |
|
"""Generate enhanced responses using the knowledge base""" |
|
query_lower = query.lower() |
|
|
|
|
|
if any(word in query_lower for word in ['list', 'project', 'portfolio', 'built', 'created', 'developed']): |
|
response_parts = ["Here are my key projects:"] |
|
|
|
|
|
response_parts.append("\nMajor Projects (In Development):") |
|
for project in knowledge_base['projects']['major_projects']: |
|
response_parts.append(format_project_response(project, indent_level=1)) |
|
|
|
|
|
response_parts.append("\nCompleted Algorithm Implementation Projects:") |
|
for project in knowledge_base['projects']['algorithm_practice_projects']: |
|
response_parts.append(format_project_response(project, indent_level=1)) |
|
|
|
response = '\n'.join(response_parts) |
|
return add_relevant_links(response, query, knowledge_base) |
|
|
|
|
|
elif len(query.split()) > 20 and any(phrase in query_lower for phrase in |
|
['requirements', 'qualifications', 'looking for', 'job description']): |
|
|
|
matches = analyze_job_requirements(query, knowledge_base) |
|
relevant_projects = find_relevant_projects(query, knowledge_base['projects']['major_projects']) |
|
|
|
response_parts = ["Based on the job requirements, here's how my profile aligns:\n"] |
|
|
|
|
|
if any(matches.values()): |
|
response_parts.append("• Technical Skills Alignment:") |
|
for category, skills in matches.items(): |
|
if skills: |
|
response_parts.append(f" - Strong {category} skills: {', '.join(skills)}") |
|
response_parts.append("") |
|
|
|
|
|
if relevant_projects: |
|
response_parts.append("• Relevant Project Experience:") |
|
for project in relevant_projects: |
|
desc = f" - {project['name']}: {project['description']}" |
|
response_parts.append(desc) |
|
response_parts.append("") |
|
|
|
|
|
response_parts.extend([ |
|
"• Education and Background:", |
|
" - Advanced AI/ML education in Canada", |
|
" - Unique commerce background providing business perspective", |
|
" - Strong foundation in practical ML implementation", |
|
"" |
|
]) |
|
|
|
return '\n'.join(response_parts) |
|
|
|
|
|
elif any(word in query_lower for word in ['market', 'think', 'believe', 'opinion', 'weather']): |
|
return handle_perspective_query(query, knowledge_base) |
|
|
|
|
|
elif any(word in query_lower for word in ['background', 'journey', 'story', 'transition']): |
|
return format_story_response(knowledge_base) |
|
|
|
|
|
return format_default_response(knowledge_base) |
|
|
|
def main(): |
|
st.title("💬 Chat with Manyue's AI Assistant") |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
if "knowledge_base" not in st.session_state: |
|
try: |
|
with open('knowledge_base.json', 'r', encoding='utf-8') as f: |
|
st.session_state.knowledge_base = json.load(f) |
|
except FileNotFoundError: |
|
st.error("Knowledge base file not found.") |
|
return |
|
|
|
|
|
if "displayed_welcome" not in st.session_state: |
|
st.write(""" |
|
Hi! I'm Manyue's AI assistant. I can tell you about: |
|
- My journey from commerce to ML/AI |
|
- My technical skills and projects |
|
- My fit for ML/AI roles |
|
- My perspective on the tech industry |
|
- You can also paste job descriptions to see how my profile matches! |
|
""") |
|
st.session_state.displayed_welcome = True |
|
|
|
|
|
col1, col2 = st.columns([3, 1]) |
|
|
|
with col1: |
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
|
|
if prompt := st.chat_input("Ask me anything or paste a job description..."): |
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
|
|
|
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
|
|
|
with st.chat_message("assistant"): |
|
try: |
|
response = generate_response(prompt, st.session_state.knowledge_base) |
|
st.markdown(response) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
except Exception as e: |
|
st.error(f"An error occurred: {str(e)}") |
|
|
|
with col2: |
|
st.subheader("Quick Questions") |
|
example_questions = [ |
|
"Tell me about your ML projects", |
|
"What are your technical skills?", |
|
"What makes you stand out?", |
|
"What's your journey into ML?", |
|
"Your view on the current market?" |
|
] |
|
|
|
|
|
for question in example_questions: |
|
if st.button(question, key=f"btn_{question}"): |
|
with st.chat_message("user"): |
|
st.markdown(question) |
|
st.session_state.messages.append({"role": "user", "content": question}) |
|
|
|
with st.chat_message("assistant"): |
|
try: |
|
response = generate_response(question, st.session_state.knowledge_base) |
|
st.markdown(response) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
except Exception as e: |
|
st.error(f"An error occurred: {str(e)}") |
|
|
|
st.rerun() |
|
|
|
st.markdown("---") |
|
if st.button("Clear Chat", key="clear_chat"): |
|
st.session_state.messages = [] |
|
st.rerun() |
|
|
|
if __name__ == "__main__": |
|
main() |