Spaces:
Runtime error
Runtime error
Commit
·
4ad4a2a
1
Parent(s):
2d2f625
update
Browse files- .gitattributes +1 -0
- README.md +1 -1
- app.py +12 -2
- app_high_res.py +237 -0
- examples/1006309.mp4 +0 -0
- examples/3005033.mp4 +0 -0
- examples/7004180.mp4 +0 -0
- examples/a400480.mp4 +0 -0
- examples/a500010.mp4 +0 -0
- examples/a500251.mp4 +0 -0
- examples/b304986.mp4 +0 -0
- examples/b402727.mp4 +0 -0
- examples/b404675.mp4 +0 -0
- examples/d401950.mp4 +0 -0
- examples/d500506.mp4 +0 -0
- examples/d500937.mp4 +0 -0
- examples/hd.json +62 -0
- examples/hd1.mp4 +3 -0
- examples/hd2.mp4 +3 -0
- examples/hd3.mp4 +3 -0
- examples/hd4.mp4 +3 -0
- examples/r003679.mp4 +0 -0
- examples/r004061.mp4 +0 -0
- examples/r100916.mp4 +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -5,7 +5,7 @@ colorFrom: green
|
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.24.0
|
| 8 |
-
app_file:
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
short_description: Multimodal Language Model
|
|
|
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.24.0
|
| 8 |
+
app_file: app_high_res.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
short_description: Multimodal Language Model
|
app.py
CHANGED
|
@@ -10,8 +10,8 @@ import functools
|
|
| 10 |
from transformers import AutoProcessor, Idefics2ForConditionalGeneration
|
| 11 |
from models.conversation import conv_templates
|
| 12 |
from typing import List
|
| 13 |
-
processor = AutoProcessor.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-
|
| 14 |
-
model = Idefics2ForConditionalGeneration.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-
|
| 15 |
MAX_NUM_FRAMES = 24
|
| 16 |
conv_template = conv_templates["idefics_2"]
|
| 17 |
|
|
@@ -23,6 +23,14 @@ for item in examples:
|
|
| 23 |
item['images'] = [os.path.join("./examples", video_id, x) for x in item['images']]
|
| 24 |
item['video'] = os.path.join("./examples", item['video'])
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
VIDEO_EVAL_PROMPT = """
|
| 27 |
Suppose you are an expert in judging and evaluating the quality of AI-generated videos,
|
| 28 |
please watch the following frames of a given video and see the text prompt for generating the video,
|
|
@@ -155,6 +163,8 @@ def eval_video(prompt, video:str):
|
|
| 155 |
video_frames = read_video_pyav(container, indices)
|
| 156 |
|
| 157 |
frames = [Image.fromarray(x) for x in video_frames]
|
|
|
|
|
|
|
| 158 |
|
| 159 |
eval_prompt = VIDEO_EVAL_PROMPT.format(text_prompt=prompt)
|
| 160 |
eval_prompt += "<video>"
|
|
|
|
| 10 |
from transformers import AutoProcessor, Idefics2ForConditionalGeneration
|
| 11 |
from models.conversation import conv_templates
|
| 12 |
from typing import List
|
| 13 |
+
processor = AutoProcessor.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-95k-mantis-2epoch_4096")
|
| 14 |
+
model = Idefics2ForConditionalGeneration.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-95k-mantis-2epoch_4096", device_map="auto")
|
| 15 |
MAX_NUM_FRAMES = 24
|
| 16 |
conv_template = conv_templates["idefics_2"]
|
| 17 |
|
|
|
|
| 23 |
item['images'] = [os.path.join("./examples", video_id, x) for x in item['images']]
|
| 24 |
item['video'] = os.path.join("./examples", item['video'])
|
| 25 |
|
| 26 |
+
with open("./examples/hd.json", 'r') as f:
|
| 27 |
+
hd_examples = json.load(f)
|
| 28 |
+
|
| 29 |
+
for item in hd_examples:
|
| 30 |
+
item['video'] = os.path.join("./examples", item['video'])
|
| 31 |
+
|
| 32 |
+
examples = hd_examples + examples
|
| 33 |
+
|
| 34 |
VIDEO_EVAL_PROMPT = """
|
| 35 |
Suppose you are an expert in judging and evaluating the quality of AI-generated videos,
|
| 36 |
please watch the following frames of a given video and see the text prompt for generating the video,
|
|
|
|
| 163 |
video_frames = read_video_pyav(container, indices)
|
| 164 |
|
| 165 |
frames = [Image.fromarray(x) for x in video_frames]
|
| 166 |
+
# resize to 256 x 256
|
| 167 |
+
frames = [x.resize((256, 256)) for x in frames]
|
| 168 |
|
| 169 |
eval_prompt = VIDEO_EVAL_PROMPT.format(text_prompt=prompt)
|
| 170 |
eval_prompt += "<video>"
|
app_high_res.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import os
|
| 4 |
+
import time
|
| 5 |
+
import json
|
| 6 |
+
import numpy as np
|
| 7 |
+
import av
|
| 8 |
+
import torch
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import functools
|
| 11 |
+
from transformers import AutoProcessor, Idefics2ForConditionalGeneration
|
| 12 |
+
from models.conversation import conv_templates
|
| 13 |
+
from typing import List
|
| 14 |
+
processor = AutoProcessor.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-high-res-35k-mantis-2epoch_4096")
|
| 15 |
+
model = Idefics2ForConditionalGeneration.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-high-res-35k-mantis-2epoch_4096", device_map="auto", torch_dtype=torch.float16)
|
| 16 |
+
MAX_NUM_FRAMES = 24
|
| 17 |
+
conv_template = conv_templates["idefics_2"]
|
| 18 |
+
|
| 19 |
+
with open("./examples/all_subsets.json", 'r') as f:
|
| 20 |
+
examples = json.load(f)
|
| 21 |
+
|
| 22 |
+
for item in examples:
|
| 23 |
+
video_id = item['images'][0].split("_")[0]
|
| 24 |
+
item['images'] = [os.path.join("./examples", video_id, x) for x in item['images']]
|
| 25 |
+
item['video'] = os.path.join("./examples", item['video'])
|
| 26 |
+
|
| 27 |
+
with open("./examples/hd.json", 'r') as f:
|
| 28 |
+
hd_examples = json.load(f)
|
| 29 |
+
|
| 30 |
+
for item in hd_examples:
|
| 31 |
+
item['video'] = os.path.join("./examples", item['video'])
|
| 32 |
+
|
| 33 |
+
examples = hd_examples + examples
|
| 34 |
+
|
| 35 |
+
VIDEO_EVAL_PROMPT = """
|
| 36 |
+
Suppose you are an expert in judging and evaluating the quality of AI-generated videos,
|
| 37 |
+
please watch the following frames of a given video and see the text prompt for generating the video,
|
| 38 |
+
then give scores from 7 different dimensions:
|
| 39 |
+
(1) visual quality: the quality of the video in terms of clearness, resolution, brightness, and color
|
| 40 |
+
(2) object consistency, the consistency of objects or humans in video
|
| 41 |
+
(3) dynamic degree, the degree of dynamic changes
|
| 42 |
+
(4) motion smoothness, the smoothness of motion or movements
|
| 43 |
+
(5) text-to-video alignment, the alignment between the text prompt and the video content
|
| 44 |
+
(6) factual consistency, the consistency of the video content with the common-sense and factual knowledge
|
| 45 |
+
(7) overall score, the overall quality of the video
|
| 46 |
+
for each dimension, output a number from [1,2,3,4],
|
| 47 |
+
in which '1' is 'Bad', '2' is 'Average', '3' is 'Good', '4' is 'Perfect'
|
| 48 |
+
Here is an output example:
|
| 49 |
+
visual quality: 3
|
| 50 |
+
object consistency: 4
|
| 51 |
+
dynamic degree: 4
|
| 52 |
+
motion smoothness: 1
|
| 53 |
+
text-to-video alignment: 1
|
| 54 |
+
factual consistency: 2
|
| 55 |
+
overall score: 1
|
| 56 |
+
|
| 57 |
+
For this video, the text prompt is "{text_prompt}",
|
| 58 |
+
all the frames of video are as follows:
|
| 59 |
+
|
| 60 |
+
"""
|
| 61 |
+
@spaces.GPU
|
| 62 |
+
def generate(text:str, images:List[Image.Image], history: List[dict], **kwargs):
|
| 63 |
+
global processor, model
|
| 64 |
+
model = model.to("cuda") if model.device.type != "cuda" else model
|
| 65 |
+
if not images:
|
| 66 |
+
images = None
|
| 67 |
+
|
| 68 |
+
user_role = conv_template.roles[0]
|
| 69 |
+
assistant_role = conv_template.roles[1]
|
| 70 |
+
|
| 71 |
+
idefics_2_message = []
|
| 72 |
+
cur_img_idx = 0
|
| 73 |
+
cur_vid_idx = 0
|
| 74 |
+
all_videos = [x for x in images if isinstance(x, list)]
|
| 75 |
+
flatten_images = []
|
| 76 |
+
for x in images:
|
| 77 |
+
if isinstance(x, list):
|
| 78 |
+
flatten_images.extend(x)
|
| 79 |
+
else:
|
| 80 |
+
flatten_images.append(x)
|
| 81 |
+
|
| 82 |
+
print(history)
|
| 83 |
+
for i, message in enumerate(history):
|
| 84 |
+
if message["role"] == user_role:
|
| 85 |
+
idefics_2_message.append({
|
| 86 |
+
"role": user_role,
|
| 87 |
+
"content": []
|
| 88 |
+
})
|
| 89 |
+
message_text = message["text"]
|
| 90 |
+
num_video_tokens_in_text = message_text.count("<video>")
|
| 91 |
+
if num_video_tokens_in_text > 0:
|
| 92 |
+
for _ in range(num_video_tokens_in_text):
|
| 93 |
+
message_text = message_text.replace("<video>", "<image> " * len(all_videos[cur_vid_idx]), 1)
|
| 94 |
+
cur_vid_idx += 1
|
| 95 |
+
num_image_tokens_in_text = message_text.count("<image>")
|
| 96 |
+
if num_image_tokens_in_text > 0:
|
| 97 |
+
sub_texts = [x.strip() for x in message_text.split("<image>")]
|
| 98 |
+
if sub_texts[0]:
|
| 99 |
+
idefics_2_message[-1]["content"].append({"type": "text", "text": sub_texts[0]})
|
| 100 |
+
for sub_text in sub_texts[1:]:
|
| 101 |
+
idefics_2_message[-1]["content"].append({"type": "image"})
|
| 102 |
+
if sub_text:
|
| 103 |
+
idefics_2_message.append({
|
| 104 |
+
"role": user_role,
|
| 105 |
+
"content": [{"type": "text", "text": sub_text}]
|
| 106 |
+
})
|
| 107 |
+
else:
|
| 108 |
+
idefics_2_message[-1]["content"].append({"type": "text", "text": message_text})
|
| 109 |
+
elif message["role"] == assistant_role:
|
| 110 |
+
if i == len(history) - 1 and not message["text"]:
|
| 111 |
+
break
|
| 112 |
+
idefics_2_message.append({
|
| 113 |
+
"role": assistant_role,
|
| 114 |
+
"content": [{"type": "text", "text": message["text"]}]
|
| 115 |
+
})
|
| 116 |
+
if text:
|
| 117 |
+
assert idefics_2_message[-1]["role"] == assistant_role and not idefics_2_message[-1]["content"], "Internal error"
|
| 118 |
+
idefics_2_message.append({
|
| 119 |
+
"role": user_role,
|
| 120 |
+
"content": [{"type": "text", "text": text}]
|
| 121 |
+
})
|
| 122 |
+
|
| 123 |
+
print(idefics_2_message)
|
| 124 |
+
prompt = processor.apply_chat_template(idefics_2_message, add_generation_prompt=True)
|
| 125 |
+
|
| 126 |
+
images = [Image.open(x) if isinstance(x, str) else x for x in flatten_images]
|
| 127 |
+
inputs = processor(text=prompt, images=images, return_tensors="pt")
|
| 128 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 129 |
+
outputs = model.generate(**inputs, max_new_tokens=1024)
|
| 130 |
+
generated_text = processor.decode(outputs[0, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
|
| 131 |
+
return generated_text
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def read_video_pyav(container, indices):
|
| 135 |
+
'''
|
| 136 |
+
Decode the video with PyAV decoder.
|
| 137 |
+
|
| 138 |
+
Args:
|
| 139 |
+
container (av.container.input.InputContainer): PyAV container.
|
| 140 |
+
indices (List[int]): List of frame indices to decode.
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
np.ndarray: np array of decoded frames of shape (num_frames, height, width, 3).
|
| 144 |
+
'''
|
| 145 |
+
frames = []
|
| 146 |
+
container.seek(0)
|
| 147 |
+
start_index = indices[0]
|
| 148 |
+
end_index = indices[-1]
|
| 149 |
+
for i, frame in enumerate(container.decode(video=0)):
|
| 150 |
+
if i > end_index:
|
| 151 |
+
break
|
| 152 |
+
if i >= start_index and i in indices:
|
| 153 |
+
frames.append(frame)
|
| 154 |
+
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
| 155 |
+
|
| 156 |
+
def eval_video(prompt, video:str):
|
| 157 |
+
container = av.open(video)
|
| 158 |
+
|
| 159 |
+
# sample uniformly 8 frames from the video
|
| 160 |
+
total_frames = container.streams.video[0].frames
|
| 161 |
+
if total_frames > MAX_NUM_FRAMES:
|
| 162 |
+
indices = np.arange(0, total_frames, total_frames / MAX_NUM_FRAMES).astype(int)
|
| 163 |
+
else:
|
| 164 |
+
indices = np.arange(total_frames)
|
| 165 |
+
video_frames = read_video_pyav(container, indices)
|
| 166 |
+
|
| 167 |
+
frames = [Image.fromarray(x) for x in video_frames]
|
| 168 |
+
|
| 169 |
+
eval_prompt = VIDEO_EVAL_PROMPT.format(text_prompt=prompt)
|
| 170 |
+
eval_prompt += "<video>"
|
| 171 |
+
user_role = conv_template.roles[0]
|
| 172 |
+
assistant_role = conv_template.roles[1]
|
| 173 |
+
chat_messages = [
|
| 174 |
+
{
|
| 175 |
+
"role": user_role,
|
| 176 |
+
"text": eval_prompt
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"role": assistant_role,
|
| 180 |
+
"text": ""
|
| 181 |
+
}
|
| 182 |
+
]
|
| 183 |
+
response = generate(None, [frames], chat_messages)
|
| 184 |
+
return response
|
| 185 |
+
|
| 186 |
+
def build_demo():
|
| 187 |
+
with gr.Blocks() as demo:
|
| 188 |
+
gr.Markdown("""
|
| 189 |
+
## Video Evaluation
|
| 190 |
+
upload a video along with a text prompt when generating the video, this model will evaluate the video's quality from 7 different dimensions.
|
| 191 |
+
""")
|
| 192 |
+
with gr.Row():
|
| 193 |
+
video = gr.Video(width=500, label="Video")
|
| 194 |
+
with gr.Column():
|
| 195 |
+
eval_prompt_template = gr.Textbox(VIDEO_EVAL_PROMPT.strip(' \n'), label="Evaluation Prompt Template", interactive=False, max_lines=26)
|
| 196 |
+
video_prompt = gr.Textbox(label="Text Prompt", lines=1)
|
| 197 |
+
with gr.Row():
|
| 198 |
+
eval_button = gr.Button("Evaluate Video")
|
| 199 |
+
clear_button = gr.ClearButton([video, video_prompt])
|
| 200 |
+
eval_result = gr.Textbox(label="Evaluation result", interactive=False, lines=7)
|
| 201 |
+
|
| 202 |
+
eval_button.click(
|
| 203 |
+
eval_video, [video_prompt, video], [eval_result]
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
dummy_id = gr.Textbox("id", label="id", visible=False, min_width=50)
|
| 207 |
+
dummy_output = gr.Textbox("reference score", label="reference scores", visible=False, lines=7)
|
| 208 |
+
|
| 209 |
+
gr.Examples(
|
| 210 |
+
examples=
|
| 211 |
+
[
|
| 212 |
+
[
|
| 213 |
+
item['id'],
|
| 214 |
+
item['prompt'],
|
| 215 |
+
item['video'],
|
| 216 |
+
item['conversations'][1]['value']
|
| 217 |
+
] for item in examples
|
| 218 |
+
],
|
| 219 |
+
inputs=[dummy_id, video_prompt, video, dummy_output],
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# gr.Markdown("""
|
| 223 |
+
# ## Citation
|
| 224 |
+
# ```
|
| 225 |
+
# @article{jiang2024mantis,
|
| 226 |
+
# title={MANTIS: Interleaved Multi-Image Instruction Tuning},
|
| 227 |
+
# author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu},
|
| 228 |
+
# journal={arXiv preprint arXiv:2405.01483},
|
| 229 |
+
# year={2024}
|
| 230 |
+
# }
|
| 231 |
+
# ```""")
|
| 232 |
+
return demo
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
if __name__ == "__main__":
|
| 236 |
+
demo = build_demo()
|
| 237 |
+
demo.launch(share=True)
|
examples/1006309.mp4
CHANGED
|
Binary files a/examples/1006309.mp4 and b/examples/1006309.mp4 differ
|
|
|
examples/3005033.mp4
CHANGED
|
Binary files a/examples/3005033.mp4 and b/examples/3005033.mp4 differ
|
|
|
examples/7004180.mp4
CHANGED
|
Binary files a/examples/7004180.mp4 and b/examples/7004180.mp4 differ
|
|
|
examples/a400480.mp4
CHANGED
|
Binary files a/examples/a400480.mp4 and b/examples/a400480.mp4 differ
|
|
|
examples/a500010.mp4
CHANGED
|
Binary files a/examples/a500010.mp4 and b/examples/a500010.mp4 differ
|
|
|
examples/a500251.mp4
CHANGED
|
Binary files a/examples/a500251.mp4 and b/examples/a500251.mp4 differ
|
|
|
examples/b304986.mp4
CHANGED
|
Binary files a/examples/b304986.mp4 and b/examples/b304986.mp4 differ
|
|
|
examples/b402727.mp4
CHANGED
|
Binary files a/examples/b402727.mp4 and b/examples/b402727.mp4 differ
|
|
|
examples/b404675.mp4
CHANGED
|
Binary files a/examples/b404675.mp4 and b/examples/b404675.mp4 differ
|
|
|
examples/d401950.mp4
CHANGED
|
Binary files a/examples/d401950.mp4 and b/examples/d401950.mp4 differ
|
|
|
examples/d500506.mp4
CHANGED
|
Binary files a/examples/d500506.mp4 and b/examples/d500506.mp4 differ
|
|
|
examples/d500937.mp4
CHANGED
|
Binary files a/examples/d500937.mp4 and b/examples/d500937.mp4 differ
|
|
|
examples/hd.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"id": "hd1",
|
| 4 |
+
"conversations": [
|
| 5 |
+
{
|
| 6 |
+
"from": "human",
|
| 7 |
+
"value": ""
|
| 8 |
+
},
|
| 9 |
+
{
|
| 10 |
+
"from": "gpt",
|
| 11 |
+
"value": ""
|
| 12 |
+
}
|
| 13 |
+
],
|
| 14 |
+
"video": "hd1.mp4",
|
| 15 |
+
"prompt": "An indoor gym"
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"id": "hd2",
|
| 19 |
+
"conversations": [
|
| 20 |
+
{
|
| 21 |
+
"from": "human",
|
| 22 |
+
"value": ""
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"from": "gpt",
|
| 26 |
+
"value": ""
|
| 27 |
+
}
|
| 28 |
+
],
|
| 29 |
+
"video": "hd2.mp4",
|
| 30 |
+
"prompt": "None"
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"id": "hd3",
|
| 34 |
+
"conversations": [
|
| 35 |
+
{
|
| 36 |
+
"from": "human",
|
| 37 |
+
"value": ""
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"from": "gpt",
|
| 41 |
+
"value": ""
|
| 42 |
+
}
|
| 43 |
+
],
|
| 44 |
+
"video": "hd3.mp4",
|
| 45 |
+
"prompt": "A person barbecuing"
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"id": "hd4",
|
| 49 |
+
"conversations": [
|
| 50 |
+
{
|
| 51 |
+
"from": "human",
|
| 52 |
+
"value": ""
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"from": "gpt",
|
| 56 |
+
"value": ""
|
| 57 |
+
}
|
| 58 |
+
],
|
| 59 |
+
"video": "hd4.mp4",
|
| 60 |
+
"prompt": "A child eating"
|
| 61 |
+
}
|
| 62 |
+
]
|
examples/hd1.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:057409b842da7f266df0f46639a729a69eff2819e1cd0b567815bdfd93b59343
|
| 3 |
+
size 97124
|
examples/hd2.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:970d1797c5e357672a3f2cfcfabcacb6eeced4032811551166cfcb7eb63a4814
|
| 3 |
+
size 311262
|
examples/hd3.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:91ebff6f8e885d97bfddac3cd39c56957de269c552dc012fa711624860a7f1d6
|
| 3 |
+
size 223946
|
examples/hd4.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fbd672b2647c473997ef2edca63607367e2768d8de8b0683d1b504977c305c49
|
| 3 |
+
size 3860683
|
examples/r003679.mp4
CHANGED
|
Binary files a/examples/r003679.mp4 and b/examples/r003679.mp4 differ
|
|
|
examples/r004061.mp4
CHANGED
|
Binary files a/examples/r004061.mp4 and b/examples/r004061.mp4 differ
|
|
|
examples/r100916.mp4
CHANGED
|
Binary files a/examples/r100916.mp4 and b/examples/r100916.mp4 differ
|
|
|