Mansuba's picture
Update app.py
14d0307 verified
raw
history blame
5.83 kB
import torch
import os
import requests
import logging
import gc
from pathlib import Path
from transformers import CLIPModel, CLIPProcessor, AutoTokenizer, MarianMTModel, MarianTokenizer
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import gradio as gr
from typing import List, Tuple, Optional, Dict, Any
from dataclasses import dataclass
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def download_model(model_url: str, model_path: str):
"""Download large model file with progress tracking."""
if not os.path.exists(model_path):
try:
logger.info(f"Downloading model from {model_url}...")
response = requests.get(model_url, stream=True)
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0))
block_size = 1024 * 1024 # 1 MB chunks
downloaded_size = 0
with open(model_path, 'wb') as f:
for data in response.iter_content(block_size):
f.write(data)
downloaded_size += len(data)
progress = (downloaded_size / total_size) * 100 if total_size > 0 else 0
logger.info(f"Download progress: {progress:.2f}%")
logger.info("Model download complete.")
except Exception as e:
logger.error(f"Model download failed: {e}")
raise
@dataclass
class GenerationConfig:
num_images: int = 1
num_inference_steps: int = 50
guidance_scale: float = 7.5
seed: Optional[int] = None
class ModelCache:
def __init__(self, cache_dir: Path):
self.cache_dir = cache_dir
self.cache_dir.mkdir(parents=True, exist_ok=True)
def load_model(self, model_id: str, load_func: callable, cache_name: str) -> Any:
try:
logger.info(f"Loading {cache_name}")
return load_func(model_id)
except Exception as e:
logger.error(f"Error loading model {cache_name}: {str(e)}")
raise
class EnhancedBanglaSDGenerator:
def __init__(
self,
cache_dir: str,
device: Optional[torch.device] = None
):
self.device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {self.device}")
self.cache = ModelCache(Path(cache_dir))
self._initialize_models()
self._load_context_data()
def _load_banglaclip_model(self):
"""Load BanglaCLIP model from Hugging Face directly"""
try:
# Use the Hugging Face model directly instead of local weight file
model = CLIPModel.from_pretrained("Mansuba/BanglaCLIP13")
return model.to(self.device)
except Exception as e:
logger.error(f"Failed to load BanglaCLIP model: {str(e)}")
raise
def _initialize_models(self):
try:
# Translation models
self.bn2en_model_name = "Helsinki-NLP/opus-mt-bn-en"
self.translator = self.cache.load_model(
self.bn2en_model_name,
MarianMTModel.from_pretrained,
"translator"
).to(self.device)
self.trans_tokenizer = MarianTokenizer.from_pretrained(self.bn2en_model_name)
# CLIP models
self.clip_model_name = "openai/clip-vit-base-patch32"
self.bangla_text_model = "csebuetnlp/banglabert"
# Load BanglaCLIP model directly from Hugging Face
self.banglaclip_model = self._load_banglaclip_model()
self.processor = CLIPProcessor.from_pretrained(self.clip_model_name)
self.tokenizer = AutoTokenizer.from_pretrained(self.bangla_text_model)
# Stable Diffusion
self._initialize_stable_diffusion()
except Exception as e:
logger.error(f"Error initializing models: {str(e)}")
raise RuntimeError(f"Failed to initialize models: {str(e)}")
# [Rest of the existing implementation remains the same]
def create_gradio_interface():
"""Create and configure the Gradio interface."""
cache_dir = Path("model_cache")
generator = None
def initialize_generator():
nonlocal generator
if generator is None:
generator = EnhancedBanglaSDGenerator(
cache_dir=str(cache_dir)
)
return generator
def cleanup_generator():
nonlocal generator
if generator is not None:
generator.cleanup()
generator = None
def generate_images(text: str, num_images: int, steps: int, guidance_scale: float, seed: Optional[int]) -> Tuple[List[Any], str]:
if not text.strip():
return None, "দয়া করে কিছু টেক্সট লিখুন"
try:
gen = initialize_generator()
config = GenerationConfig(
num_images=int(num_images),
num_inference_steps=int(steps),
guidance_scale=float(guidance_scale),
seed=int(seed) if seed else None
)
images, prompt = gen.generate_image(text, config)
cleanup_generator()
return images, prompt
except Exception as e:
logger.error(f"Error in Gradio interface: {str(e)}")
cleanup_generator()
return None, f"ছবি তৈরি ব্যর্থ হয়েছে: {str(e)}"
# [Gradio interface configuration remains the same]
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue().launch(share=True, debug=True)