File size: 6,523 Bytes
6b4f4ab
04a4097
 
 
 
6b4f4ab
 
 
184cc4e
6b4f4ab
 
 
 
 
 
 
 
 
04a4097
 
 
 
 
 
 
184cc4e
04a4097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b4f4ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14d0307
6b4f4ab
 
14d0307
 
 
 
 
 
 
 
 
 
6b4f4ab
04a4097
6b4f4ab
 
 
 
 
 
 
 
04a4097
6b4f4ab
 
14d0307
 
 
 
6b4f4ab
 
 
04a4097
6b4f4ab
 
 
 
 
 
184cc4e
 
 
6b4f4ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184cc4e
 
 
 
 
 
 
 
 
 
 
 
 
6b4f4ab
 
 
184cc4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torch
import os
import requests
import logging
from pathlib import Path
from transformers import CLIPModel, CLIPProcessor, AutoTokenizer, MarianMTModel, MarianTokenizer
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import gradio as gr
from typing import List, Tuple, Optional, Any
from dataclasses import dataclass

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

def download_model(model_url: str, model_path: str):
    """Download large model file with progress tracking."""
    if not os.path.exists(model_path):
        try:
            logger.info(f"Downloading model from {model_url}...")
            response = requests.get(model_url, stream=True)
            response.raise_for_status()

            total_size = int(response.headers.get('content-length', 0))
            block_size = 1024 * 1024  # 1 MB chunks
            downloaded_size = 0

            with open(model_path, 'wb') as f:
                for data in response.iter_content(block_size):
                    f.write(data)
                    downloaded_size += len(data)
                    progress = (downloaded_size / total_size) * 100 if total_size > 0 else 0
                    logger.info(f"Download progress: {progress:.2f}%")

            logger.info("Model download complete.")
        except Exception as e:
            logger.error(f"Model download failed: {e}")
            raise

@dataclass
class GenerationConfig:
    num_images: int = 1
    num_inference_steps: int = 50
    guidance_scale: float = 7.5
    seed: Optional[int] = None

class ModelCache:
    def __init__(self, cache_dir: Path):
        self.cache_dir = cache_dir
        self.cache_dir.mkdir(parents=True, exist_ok=True)

    def load_model(self, model_id: str, load_func: callable, cache_name: str) -> Any:
        try:
            logger.info(f"Loading {cache_name}")
            return load_func(model_id)
        except Exception as e:
            logger.error(f"Error loading model {cache_name}: {str(e)}")
            raise

class EnhancedBanglaSDGenerator:
    def __init__(
        self,
        cache_dir: str,
        device: Optional[torch.device] = None
    ):
        self.device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
        logger.info(f"Using device: {self.device}")

        self.cache = ModelCache(Path(cache_dir))
        self._initialize_models()
        self._load_context_data()

    def _load_banglaclip_model(self):
        """Load BanglaCLIP model from Hugging Face directly"""
        try:
            model = CLIPModel.from_pretrained("Mansuba/BanglaCLIP13")
            return model.to(self.device)
        except Exception as e:
            logger.error(f"Failed to load BanglaCLIP model: {str(e)}")
            raise

    def _initialize_models(self):
        try:
            # Translation models
            self.bn2en_model_name = "Helsinki-NLP/opus-mt-bn-en"
            self.translator = self.cache.load_model(
                self.bn2en_model_name,
                MarianMTModel.from_pretrained,
                "translator"
            ).to(self.device)
            self.trans_tokenizer = MarianTokenizer.from_pretrained(self.bn2en_model_name)

            # CLIP models
            self.clip_model_name = "openai/clip-vit-base-patch32"
            self.bangla_text_model = "csebuetnlp/banglabert"
            
            # Load BanglaCLIP model directly from Hugging Face
            self.banglaclip_model = self._load_banglaclip_model()
            
            self.processor = CLIPProcessor.from_pretrained(self.clip_model_name)
            self.tokenizer = AutoTokenizer.from_pretrained(self.bangla_text_model)

            # Stable Diffusion
            self._initialize_stable_diffusion()

        except Exception as e:
            logger.error(f"Error initializing models: {str(e)}")
            raise RuntimeError(f"Failed to initialize models: {str(e)}")

    def _initialize_stable_diffusion(self):
        """Load and initialize Stable Diffusion pipeline"""
        pass  # Your existing code for initializing Stable Diffusion

def create_gradio_interface():
    """Create and configure the Gradio interface."""
    cache_dir = Path("model_cache")
    generator = None

    def initialize_generator():
        nonlocal generator
        if generator is None:
            generator = EnhancedBanglaSDGenerator(
                cache_dir=str(cache_dir)
            )
        return generator

    def cleanup_generator():
        nonlocal generator
        if generator is not None:
            generator.cleanup()
            generator = None

    def generate_images(text: str, num_images: int, steps: int, guidance_scale: float, seed: Optional[int]) -> Tuple[List[Any], str]:
        if not text.strip():
            return None, "দয়া করে কিছু টেক্সট লিখুন"

        try:
            gen = initialize_generator()
            config = GenerationConfig(
                num_images=int(num_images),
                num_inference_steps=int(steps),
                guidance_scale=float(guidance_scale),
                seed=int(seed) if seed else None
            )

            images, prompt = gen.generate_image(text, config)
            cleanup_generator()
            return images, prompt

        except Exception as e:
            logger.error(f"Error in Gradio interface: {str(e)}")
            cleanup_generator()
            return None, f"ছবি তৈরি ব্যর্থ হয়েছে: {str(e)}"

    with gr.Blocks() as demo:
        text_input = gr.Textbox(label="Text", placeholder="Enter your prompt here...")
        num_images_input = gr.Slider(minimum=1, maximum=5, value=1, label="Number of Images")
        steps_input = gr.Slider(minimum=1, maximum=100, value=50, label="Steps")
        guidance_scale_input = gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale")
        seed_input = gr.Number(label="Seed", optional=True)

        output_images = gr.Gallery(label="Generated Images")

        generate_button = gr.Button("Generate Images")
        generate_button.click(generate_images, inputs=[text_input, num_images_input, steps_input, guidance_scale_input, seed_input], outputs=[output_images])

    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.queue().launch(share=True, debug=True)