Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
|
2 |
-
import gradio as gr
|
3 |
-
import os
|
4 |
-
import torch
|
5 |
-
from model import create_effnetb2_model
|
6 |
-
from timeit import default_timer as Timer
|
7 |
-
from typing import Tuple,Dict
|
8 |
-
class_names=["pizza","steak","sushi"]
|
9 |
-
effnetb2,effnetb2_transforms=create_effnetb2_model(num_classes=3)
|
10 |
-
effnetb2.load_state_dict(
|
11 |
-
torch.load(
|
12 |
-
f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
|
13 |
-
map_location=torch.device("cpu")
|
14 |
-
)
|
15 |
-
)g
|
16 |
-
|
17 |
-
def predict(img) -> Tuple[Dict,float]:
|
18 |
-
start_time = timer()
|
19 |
-
img = effnetb2_transforms(img).unsqueeze(0)
|
20 |
-
|
21 |
-
effnetb2.eval()
|
22 |
-
with torch.inference_mode():
|
23 |
-
pred_probs = torch.softmax(effnetb2(img), dim=1)
|
24 |
-
|
25 |
-
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
|
26 |
-
pred_time = round(timer() - start_time, 5)
|
27 |
-
return pred_labels_and_probs, pred_time
|
28 |
-
|
29 |
-
|
30 |
-
title = "FoodVision Mini 🍕🥩🍣"
|
31 |
-
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
|
32 |
-
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
|
33 |
-
|
34 |
-
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
35 |
-
|
36 |
-
demo = gr.Interface(fn=predict,
|
37 |
-
inputs=gr.Image(type="pil"),
|
38 |
-
outputs=[gr.Label(num_top_classes=3, label="Predictions"),
|
39 |
-
gr.Number(label="Prediction time (s)")],
|
40 |
-
examples=example_list,
|
41 |
-
title=title,
|
42 |
-
description=description,
|
43 |
-
article=article)
|
44 |
-
|
45 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|