File size: 18,708 Bytes
96c153e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
# -*- coding: utf-8 -*-
"""VirtualHealth.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1yVSYiPz-WUlO7U0uAKe9LmfMXHd5eyAA
"""
!pip install streamlit
import xgboost as xgb
import pickle
import numpy as np
import pandas as pd
# Load the trained model
model = xgb.XGBClassifier()
model.load_model("symptom_disease_model.json")
# Load the label encoder
label_encoder = pickle.load(open("label_encoder.pkl", "rb"))
# Load symptom names (from preprocessed training data)
X_train = pd.read_csv("X_train.csv") # Get feature names
symptom_list = X_train.columns.tolist()
# Function to Predict Disease
def predict_disease(user_symptoms):
# Convert user symptoms into one-hot encoded format
input_vector = np.zeros(len(symptom_list))
for symptom in user_symptoms:
if symptom in symptom_list:
input_vector[symptom_list.index(symptom)] = 1
input_vector = input_vector.reshape(1, -1) # Reshape for model
# Predict disease (returns a numerical class)
predicted_class = model.predict(input_vector)[0]
# Convert number to disease name
predicted_disease = label_encoder.inverse_transform([predicted_class])[0]
return predicted_disease
# Example Usage
user_symptoms = ["itching", "skin_rash", "nodal_skin_eruptions"]
predicted_disease = predict_disease(user_symptoms)
print(f"Predicted Disease: {predicted_disease}")
!pip install zipfile36
import sys
if sys.version_info >= (3, 6):
import zipfile
else:
import zipfile36 as zipfile
import os
zip_file_path = '/content/disease symptom.zip' # Update with your path
extracted_dir = '/content' # Where to extract the files
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(extracted_dir)
# Load the precaution dataset
precaution_df = pd.read_csv("Disease precaution.csv")
# Convert to dictionary for fast lookup
precaution_dict = {}
for _, row in precaution_df.iterrows():
disease = row["Disease"].strip().lower()
precautions = [row[f"Precaution_{i}"] for i in range(1, 5) if pd.notna(row[f"Precaution_{i}"])]
precaution_dict[disease] = precautions
# Function to Get Precautions
def get_precautions(disease_name):
disease_name = disease_name.strip().lower()
return precaution_dict.get(disease_name, ["No precautions found"])
# Example Usage
precautions = get_precautions(predicted_disease)
print(f"Precautions for {predicted_disease}: {precautions}")
!pip install nltk
import re
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
# Download stopwords if not already downloaded
nltk.download("stopwords")
nltk.download("punkt")
# Load English stopwords
stop_words = set(stopwords.words("english"))
nltk.download('punkt_tab')
import xgboost as xgb
import pickle
import numpy as np
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
import re # Import regex module for better input processing
# ============================
# πΉ 1. Load Pretrained Medical Q&A Model
# ============================
qa_model_name = "deepset/roberta-base-squad2" # Better model for medical Q&A
tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
qa_model = AutoModelForQuestionAnswering.from_pretrained(qa_model_name)
# ============================
# πΉ 2. Load Symptom Checker Model & Label Encoder (Fixed)
# ============================
# Load trained XGBoost model from JSON
model = xgb.XGBClassifier()
model.load_model("symptom_disease_model.json")
common_symptoms = ["fever", "cough", "headache", "pain", "vomiting", "fatigue", "nausea", "rash", "chills", "dizziness", "sore throat", "diarrhea"]
# Load Corrected Label Encoder
label_encoder = pickle.load(open("label_encoder.pkl", "rb"))
# Load symptom names from training data
X_train = pd.read_csv("X_train.csv") # Get feature names
symptom_list = X_train.columns.tolist()
# ============================
# πΉ 3. Load Precaution Data
# ============================
precaution_df = pd.read_csv("Disease precaution.csv")
precaution_dict = {
row["Disease"].strip().lower(): [row[f"Precaution_{i}"] for i in range(1, 5) if pd.notna(row[f"Precaution_{i}"])]
for _, row in precaution_df.iterrows()
}
# ============================
# πΉ 4. Load Medical Context
# ============================
def load_medical_context():
with open("medical_context.txt", "r", encoding="utf-8") as file:
return file.read()
medical_context = load_medical_context()
# ============================
# πΉ 5. Doctor Database (For Appointments)
# ============================
doctor_database = {
"malaria": [{"name": "Dr. Rajesh Kumar", "specialty": "Infectious Diseases", "location": "Apollo Hospital", "contact": "9876543210"}],
"diabetes": [{"name": "Dr. Anil Mehta", "specialty": "Endocrinologist", "location": "AIIMS Delhi", "contact": "9876543233"}],
"heart attack": [{"name": "Dr. Vikram Singh", "specialty": "Cardiologist", "location": "Medanta Hospital", "contact": "9876543255"}],
"hepatitis e": [{"name": "Dr. Sunil Agarwal", "specialty": "Hepatologist", "location": "Fortis Hospital", "contact": "9876543266"}],
"pneumonia": [{"name": "Dr. Priya Sharma", "specialty": "Pulmonologist", "location": "Max Healthcare", "contact": "9876543277"}],
"heartattack": [{"name": "Dr. Vikram Singh", "specialty": "Cardiologist", "location": "Medanta Hospital", "contact": "9876543255"}],
}
# ============================
# πΉ 6. Predict Disease from Symptoms (Fully Fixed)
# ============================
def predict_disease(user_symptoms):
"""Predicts the disease based on user symptoms using the trained XGBoost model."""
input_vector = np.zeros(len(symptom_list))
for symptom in user_symptoms:
if symptom in symptom_list:
input_vector[symptom_list.index(symptom)] = 1 # One-hot encoding
input_vector = input_vector.reshape(1, -1) # Reshape for model input
# Predict disease (returns a numerical class)
predicted_class = model.predict(input_vector)[0]
# Convert number to disease name
predicted_disease = label_encoder.inverse_transform([predicted_class])[0]
return predicted_disease
# ============================
# πΉ 7. Get Precautions for a Disease
# ============================
def get_precautions(disease):
"""Returns the precautions for a given disease."""
return precaution_dict.get(disease.lower(), ["No precautions available"])
# ============================
# πΉ 8. Answer Medical Questions (Q&A Model)
# ============================
def get_medical_answer(question):
"""Uses the pre-trained Q&A model to answer general medical questions."""
inputs = tokenizer(question, medical_context, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = qa_model(**inputs)
answer_start = torch.argmax(outputs.start_logits)
answer_end = torch.argmax(outputs.end_logits) + 1
answer = tokenizer.convert_tokens_to_string(
tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end])
)
return answer if answer.strip() and answer != "[CLS]" else "No reliable answer found."
# ============================
# πΉ 9. Book a Doctor's Appointment
# ============================
def book_appointment(disease):
"""Finds a doctor for the given disease and returns appointment details."""
disease = disease.lower().strip()
doctors = doctor_database.get(disease, [])
if not doctors:
return f"Sorry, no available doctors found for {disease}."
doctor = doctors[0]
return f"Appointment booked with **{doctor['name']}** ({doctor['specialty']}) at **{doctor['location']}**.\nContact: {doctor['contact']}"
# ============================
# πΉ 10. Handle User Queries
# ============================
def extract_treatment_from_context(disease):
"""Extracts treatment details for a given disease from `medical_context.txt`."""
with open("medical_context.txt", "r", encoding="utf-8") as file:
lines = file.readlines()
treatment_section = []
found_disease = False
found_treatment = False
for line in lines:
line = line.strip()
# Check if we found the disease name
if f"## {disease.lower()}" in line.lower():
found_disease = True
# If we found the disease, now look for "Treatment"
if found_disease and "**Treatment**" in line:
found_treatment = True
continue # Skip the "**Treatment**:" line itself
# If found, keep extracting treatment details
if found_treatment:
# Stop at blank line or the next section (## New Disease Name)
if line == "" or line.startswith("## "):
break
treatment_section.append(line)
return "\n".join(treatment_section) if treatment_section else None
def extract_disease_name(user_query):
"""Extracts the disease name by removing unnecessary words, but keeps medical terms."""
user_query_cleaned = re.sub(r"[^\w\s]", "", user_query.lower()) # Remove punctuation
words = word_tokenize(user_query_cleaned)
# Remove stopwords but keep diseases/symptoms
filtered_words = [word for word in words if word not in stop_words or word in common_symptoms]
return " ".join(filtered_words).strip()
def find_best_match(query, database):
"""Finds the best matching disease from the database based on query words."""
query_words = query.split() # Split query into words
# Check for exact match first
if query in database:
return query # Exact match found
# Check if any word in query exists in database keys
for disease in database:
for word in query_words:
if word in disease: # Partial match found
return disease
return None # No match found
def handle_user_query(user_query):
"""Handles user queries related to symptoms, diseases, and doctor appointments."""
user_query = user_query.lower().strip()
# Skip Cleaning for "I have..." and "experiencing..." Cases
if "i have" in user_query or "experiencing" in user_query:
symptoms = user_query.replace("I have", "").replace("experiencing", "").strip()
disease = predict_disease(symptoms.split(", ")) # Convert to list
precautions = get_precautions(disease)
return f"**Predicted Disease:** {disease}\n**Precautions:** {', '.join(precautions)}\n{book_appointment(disease)}"
# Extract Disease Name for Queries
user_query_cleaned = extract_disease_name(user_query)
# Handle "Who should I see for..." Queries (Improved with Partial Matching)
if "who should i see " in user_query:
disease_query = user_query.replace("who should i see", "").strip()
disease = find_best_match(disease_query, doctor_database) # Get best match
if disease:
doctor = doctor_database[disease][0]
return f"You should see a **{doctor['specialty']}** for {disease}.\nExample: {doctor['name']} at {doctor['location']}."
else:
return "I'm not sure. Please consult a general physician for more guidance."
# Book Appointment (Improved with Partial Matching)
elif "book appointment" in user_query_cleaned:
disease_query = user_query_cleaned.replace("book appointment", "").strip()
disease = find_best_match(disease_query, doctor_database)
return book_appointment(disease) if disease else "Sorry, no matching doctor found."
# Symptoms Query
elif "symptoms" in user_query_cleaned or "signs" in user_query_cleaned:
disease = user_query_cleaned.replace("symptoms", "").replace("signs", "").strip()
return get_medical_answer(f"What are the symptoms of {disease}?")
# Precautions Query
elif "precautions" in user_query_cleaned or "prevent" in user_query_cleaned:
disease = user_query_cleaned.replace("precautions", "").replace("prevent", "").strip()
return ", ".join(get_precautions(disease))
# Treatment Query
if "treatment" in user_query_cleaned or "treat" in user_query_cleaned:
disease = user_query_cleaned.replace("treatment", "").replace("treat", "").strip()
# πΉ First, try to extract treatment from `medical_context.txt`
treatment_answer = extract_treatment_from_context(disease)
if treatment_answer:
return treatment_answer # Use direct extraction first
# πΉ If no treatment info found, use the Q&A Model
model_answer = get_medical_answer(f"What is the treatment for {disease}?")
if model_answer in ["<s>", "", "No reliable answer found."]:
return f"I'm not sure, but common treatments for {disease} include medication, therapy, or consulting a specialist."
return model_answer
# General Medical Questions (Fallback)
else:
response = get_medical_answer(user_query)
if response in ["<s>", "", "No reliable answer found."]:
return "I'm not sure, but you may consult a specialist for better guidance."
return response
# ============================
# πΉ 11. Test Cases (Run Examples)
# ============================
print(handle_user_query("I have fever, chills, and muscle aches")) # Should predict disease & precautions
print(handle_user_query("What are the symptoms of pneumonia?")) # Should return pneumonia symptoms
print(handle_user_query("Book an appointment for diabetes")) # Should book a diabetes specialist
print(handle_user_query("Who should I see for heart attack")) # Should return "Cardiologist"
print(handle_user_query("what is the treatment for tuberculosis")) # Should return correct treatment
print(handle_user_query("What is the treatment for tuberculosis?")) # Should return correct treatment
print(handle_user_query("What is the treatment for malaria?")) # Should also work
print(handle_user_query("What is the treatment for cancer?")) # Should return something useful
print(handle_user_query("What is the treatment for tuberculosis?")) # Should return correct treatment
print(handle_user_query("What is the treatment for malaria?")) # Should also work
print(handle_user_query("What is the treatment for cancer?")) # Should return something useful
print(handle_user_query("How to treat diabetes?")) # Should return proper treatment
print(handle_user_query("Tell me the cure for pneumonia?")) # Should return treatment
print(handle_user_query("Treatment for typhoid?")) # Should extract treatment
print(handle_user_query("What are the symptoms of pneumonia?")) # Should return correct symptoms
print(handle_user_query("Signs of heart attack?")) # Should return expected symptoms
print(handle_user_query("How do I know if I have typhoid?")) # Should return typhoid symptoms
print(handle_user_query("What symptoms should I check for tuberculosis?")) # Should work
print(handle_user_query("Symptoms of dengue?")) # Should return symptoms of dengue
print(handle_user_query("Who should I see for a heart attack?")) # Should return "Cardiologist"
print(handle_user_query("Which doctor should I visit for diabetes?")) # Should return "Endocrinologist"
print(handle_user_query("Who should I consult for a skin rash?")) # Should return "Dermatologist"
print(handle_user_query("What kind of doctor treats pneumonia?")) # Should return "Pulmonologist"
print(handle_user_query("Who specializes in treating migraines?")) # Should return "Neurologist"
print(handle_user_query("Book an appointment for malaria")) # Should book doctor for malaria
print(handle_user_query("I need a doctor for high blood pressure")) # Should book doctor for hypertension
print(handle_user_query("Schedule a consultation for fever")) # Should book general physician
print(handle_user_query("Find a doctor for diabetes treatment")) # Should book endocrinologist
print(handle_user_query("Book an appointment for pneumonia treatment")) # Should book pulmonologist
print(handle_user_query("I have fever, cough, and chills")) # Should predict disease correctly
print(handle_user_query("Experiencing blurry vision and excessive thirst")) # Should return "Diabetes"
print(handle_user_query("I am experiencing severe chest pain and difficulty breathing")) # Should return "Heart Attack"
print(handle_user_query("Feeling tired, cold, and gaining weight")) # Should return "Hypothyroidism"
print(handle_user_query("I have rash, joint pain, and headache")) # Should return "Dengue"
print(handle_user_query("What does a doctor do?")) # Should return general doctor description
print(handle_user_query("What are antibiotics?")) # Should explain antibiotics
print(handle_user_query("How does the immune system work?")) # Should explain immunity
print(handle_user_query("What is the function of the liver?")) # Should explain liver function
print(handle_user_query("Explain how blood pressure works?")) # Should provide useful explanation
# Commented out IPython magic to ensure Python compatibility.
# %%writefile app.py
# import streamlit as st
# import requests
#
# st.set_page_config(page_title="AI Health Assistant", page_icon="π€")
#
# st.title("π©Ί AI Health Assistant")
# st.write("Ask any medical-related questions:")
#
# # User Input
# user_input = st.text_input("Your Question:")
#
# # Button to Send Query
# if st.button("Ask"):
# response = requests.post("https://b7da-35-232-247-117.ngrok-free.app/query/", json={"user_input": user_input})
# bot_response = response.json().get("response", "Error fetching response")
#
# st.markdown(f"**π€ Bot:** {bot_response}")
#
"""β
Steps to Deploy on Hugging Face Spaces
π Step 1: Create a Hugging Face Space
1οΈβ£ Go to Hugging Face Spaces
2οΈβ£ Click "New Space"
3οΈβ£ Name the Space (e.g., AI-Health-Assistant)
4οΈβ£ Select "Streamlit" as the SDK
5οΈβ£ Click "Create Space" β
π Step 2: Clone the Repository Locally
After creating the Space, clone it to your local machine or Google Colab:
```bash
git clone https://huggingface.co/spaces/YOUR_USERNAME/AI-Health-Assistant
cd AI-Health-Assistant
```
Replace YOUR_USERNAME with your Hugging Face username!
π Step 3: Add app.py (Your Streamlit Chatbot)
Inside the cloned folder, create app.py and paste the following:
π Step 4: Create requirements.txt
Create a new file requirements.txt inside the same folder and add:
```bash
streamlit
requests
```
π Step 5: Push Your Code to Hugging Face
Run these commands to push the code:
```bash
git add .
git commit -m "Initial commit"
git push
```
π Your Space will automatically start building!
"""
|